

IIIII 3-Phase Multi-Function Power Monitors with Advanced Capabiltites

Electro /nalustries/Faugelech
1800 Shames Drive•Westbury, New York 11590

DMMS300+, DMMS350, DMMS425 3-Phase Multifunction Power Monitors with Advanced Capabilities

Installation, Operation and Programming Manual
Doc\# E104708 Version 5.2
July 29, 2008

Electro Industries/GaugeTech
"The Leader in Power Monitoring and Control"
1800 Shames Drive

For Customer or Technical Assistance, Repair and Calibration:

Phone: (516) 334-0870 Fax (516) 338-4741

Customer support is available 9:00 A.M. to 4:30 P.M., Eastern Time, Monday through Friday. Please have the model, serial number and a detailed problem description available. If the problem concerns a particular reading, please have all meter readings available. When returning any merchandise to E.I.G., a return authorization number is required.

	Electro Industries/GaugeTech warrants this product to be free from defects in material and workmanship for a period of 4 years from date of shipment. During the warranty period, we will, at our option, either repair or replace any product that proves to be defective.		
WARRACT			To exercise this warranty, fax or call our customer service department. You will
:---			
receive prompt assistance and return instructions. Send the instrument, transportation			
prepaid, to the address above. Repairs will be made and the instrument will be			
returned.			

This warranty does not apply to defects resulting from unauthorized modification, misuse or use for any reason other than electrical power monitoring. This unit is not to be used for primary over current protection. Any protection feature in this unit is to be

LIMITATION
OF WARRANTY

STATEMENT OF CALIBRATION

DISCLAIMER

COPYRIGHT

used for alarm or secondary protection only.
This warranty is in lieu of all other warranties, expressed or implied, including any implied warranty of merchantability or fitness for a particular purpose. Electro Industries/GaugeTech shall not be liable for any indirect, special or consequential damages arising from any authorized or unauthorized use of any Electro Industries/GaugeTech product.

This instrument has been inspected and tested in accordance with specifications published by Electro Industries/GaugeTech. The accuracy and calibration of this instrument are traceable to the National Bureau of Standards through equipment that is calibrated at planned intervals by comparison to certified standards.

Information presented in this publication has been carefully checked for reliability; however, no responsibility is assumed for inaccuracies. The information contained in this document is subject to change without notice.

No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or information storage or retrieval systems or any future forms of duplication, for any purpose other than the purchaser's use, without the expressed written permission of Electro Industries/GaugeTech, division of E. I. Electronics, Inc.
©2008 Electro Industries/GaugeTech. All rights reserved. Printed in the United States of America.

TABLE OF CONTENTS

CHAPTER 1: AC Power Measurement 5
1.1: Single Phase System 5
1.2: Three-Phase System 6
1.3: Consumption, Demand and Poor Power Factor 7
1.4: WaveForm and Harmonics 8
Chapter 2: Mechanical Installation 9
2.1: Explanation of Symbols 9
2.2: MECHANICAL INSTALLATION 9
ChAPTER 3: Electrical Installation 13
3.1: Important Considerations When Installing Meters 13
3.1.1: MEASUREMENT InPUTS RATING 14
3.2: CONNECTING CURRENT CIRCUIT 14
3.3: CT CONNECTION 15
3.4: Voltage Circuit 15
3.5: Selecting the Voltage Fuses 15
3.6: CONNECTION TO THE MAIN POWER SUPPLY 16
3.7: ElECTRICAL CONNECTION INSTALLATION 16
3.8: Relay, Protection and Pulse OUTPUT 22
3.9: KYZ Pulse Outputs: NL2 Option 23
Chapter 4: Communication Installation 25
4:1: RS232C 25
4.2: RS485 25
4.3: Network and Long Distance Communication 28
Chapter 5: Overview 31
5.1: Accessing the Power Functions 32
5.2: Accessing Voltage and Current Phases 32
5.3: Accessing \%THD Functions 32
5.4: Viewing Individual Phase Indication for Power Functions 33
5.5: Accessing Max/Min Values 33
5.6: Resetting Values 33
5.7: Resetting Hour Readings 36
5.8: Accessing the LM1/LM2 Set Limits 36
5.9: Voltage Phase Reversal and ImbaLANCE 37
5.10: AcCESS MODES 38
5:11: PRINT OpERATING DATA 38
5.12: Print Programming Data 39
5.13: Accessing Firmware Version/LED TESt 39
Chapter 6: Overview 41
6.1: General Procedure. 41
6.2: Switch Packs 41
6.3: DATA ENTRY 40
6.4: Standard Numeric Data Entry. 40
CHAPTER 7: DMMS425 43
7.1: DMMS Model Comparison 44
Chapter 8: Entering the
Programming Mode 45
8.1: Checksum Error-Protective
Self-Checking Algorithms 45
8.2: Password Entry 45
Chapter 9: Programming Group 0: Global Meter Setup 47
9.1: Group 0, Function 0 The Integration Interval 47
9.2: Group 0, Function 1- The Meter Address 48
9.3: Group 0, Function 2-
BAUD RATE 49
9.4: Group 0, Function 3- System Configuration 50
9.5: Modbus Plus Capability 52
9.6: Group 0, Function 3- Programming Procedure 53
9.7: Relay Mode 54
9.8: Group 0, Functions 4-5-Time Delay for Relays 1 and 2 (Option - NL) 57
9.9: Group 0, Function 6—KYZ
Parameter Selection 59
9.10: Group 0, Function 7- Number of Phases 62
Chapter 10: Programming Group 1: Voltage, Amp and Watt Scale Settings 63
10.1: Group 1, Function 0-Full Scale Voltage Settings, Scale Factor \& Decimal Point PLACEMENT 63
10.2: Group 1, Function 1- Amperage Full Scale 66
10.3: Group 1, Function 2-Scale Selection and Decimal Placement for Watts 67
Chapter 11: Programming Group 2: Meter Calibration 71
11.1: Calibration Requirements 71
11.2: Group 2, Functions 0-8-
High End Calibration of Voltage Channels, High and Low End Calibration of Amperage Channels. 72
Chapter 12: Groups 4, 5 and 6: Set LImits and Relays 75
12.1: Trip Relay 75
12.2: Time Delays \& Relay Mode 75
12.3: Group 4, Functions 0-3- LM1/LM2 SET LIMITS 76
12.4: GROUP 5, FUnCTIONS 0-7- LM1/LM2 Set Limits 77
12.5: Group 6, Functions 0-5- LM1/LM2 Set Limits and Relay Triggers for Over/Under \%THD Conditions 80
12.6: Limits or Relays Programming Procedure 80
Chapter 13: Phase Reversal and Phase Imbalance Set Limits/Relays 83
13.1: Phase Reversal and Phase ImbaLANCE 83
13.2: TRIP Relay 83
13.3: Group 7, Function 0-Voltage Phase Reversal Detection 84
13.4: Group 7, Function 1- Percentage Voltage Phase ImbALANCE 85
Chapter 14: Exiting the Programming Mode 87
Chapter 15: Programming Quick Reference 89
15.1: Entering the Programming Mode 89
15.2: Data Entry Sequence 89
15.3: Programming Groups 89
15.4: Group 0: Global Setup 90
15.5: Group 1: Full Scale Setup 91
15.6: Group 2 Calibration 91
15.7: Group 3 Calibration Ratios 91
15.8: Group 4: Volt/Current Limits.. 91
15.9: Group 5: Power Function Limits92
15.10: Group 6: THD Limits 92
15.11: Group 7 Imbalance/Reversal Limits 92
15.12: Group 8: DC Output Calibration 92
Chapter 16: Ethernet option 95
16.1: Ethernet Module DMMS350 95
16.2: Ethernet Option Setup 96
16.3: Default IP Address. 97
16.4: AutoIP 97
16.5: Setting the IP Address 97
16.6: Network Configuration 98
16.7: Configuration Parameters 99
16.8: New Parameters for Version V01.8. 100
Addendum A-1: Dmms B Unit Mechanical Installation 101
Addendum A-2: Dmms B Unit Electrical Installation 103
A-2.1: Connecting the
Current Circuit 103
A-2.2: CT CONNECTION 103
A-2.3: Connecting the Voltage Circuit 103
A-2.4: Selecting the Voltage Fuses. 103
A-2.5: Connection to the Main Power Supply 104
A-2.6: Electrical Connection Installation 104
A-2.7: Control Relays \& Pulse Output - NL Option. 111
A-2.8: KYZ Pulse Outputs NL-2 Option 111
Addendum A-3: Dmms B Unit Communication Installation. 113
A-3.1. RS485 114
A-3.2: Communication via Modem. 114

CHAPTER 1

AC POWER MEASUREMENT

The economics of electric power distribution networking dictate several configurations of AC power transmission. The number of phases and voltage levels characterize these configurations.

1.1: Single Phase System

A single phase system is a basic two-wire system used in low power distribution applications, such as residential communities or offices. Typically, the voltage is 120 V AC. For higher power requirements, such as small commercial facilities, the typical power configuration is two lines of 120 V AC opposite in phase (see Figure 1.1 B, below).

This system produces 120 volts from line to neutral for lighting and small appliance use. The line-to-line voltage is 240 VAC , used for higher loads such as water heaters, electric dryers, ranges and machinery.

Figure 1.1: Single Phase System: (A) Two-Wire, (B) Three-Wire

The power (\mathbf{W}) in a single phase system is: $\mathrm{W}=\mathrm{E} \cdot \mid \cdot \cos \Theta$
$\mathbf{E}=$ potential, $\mathbf{I}=$ current, and $\boldsymbol{\operatorname { c o s }} \Theta=$ phase difference between the potential and the current.
Power in a $120 / 240 \mathrm{~V}$ AC system is: $\mathrm{W}=\left(\mathrm{E}_{\text {Line } 1} \bullet \mathrm{I}_{\text {Line } 1} \cdot \cos \Theta\right)+\left(\mathrm{E}_{\text {Line } 2} \bullet \mathrm{I}_{\text {Line } 2} \cdot \cos \Theta\right)$
Phase differential between the potential and the current results from a non-resistive load, either reactive or capacitive.

Reactive power (VAR): The additional power consumed that does not produce any work but must be delivered to the load: $\operatorname{VAR}=\mathrm{E} \cdot \mathrm{I} \cdot \sin \Theta$. This is a measure of the inefficiency of the electrical system.

Apparent power (VA): The total power delivered to the load, and the vector sum of real power and reactive power.

Power Factor (PF): The ratio between real power and apparent power: $P F=\frac{W}{V A}=\frac{W}{\sqrt{W^{2}+V A R^{2}}}$

Figure 1.2: Relationship between apparent, real and reactive power

Ideal power distribution should have a PF of 1. This condition can be met only if no reactive power loads exist. In real life applications, many loads are inductive loads. Often, corrective capacitors are installed to correct Poor Power Factor (see Section 1.3).

1.2: Three-Phase System

A three-phase system delivers higher levels of power for industrial and commercial applications; the three phases correspond to three potential lines. A 120° phase shift exists between the three potential lines.

A typical configuration has either a Delta connection or a Wye connection (see Figure 1.3, below).
In a three-phase system, the voltage levels between the phases and the neutral are uniform and defined by:

$$
\mathrm{E}_{\mathrm{an}}=\mathrm{E}_{\mathrm{bn}}=\mathrm{E}_{\mathrm{cn}}=\frac{\mathrm{E}_{\mathrm{ab}}}{\sqrt{3}}=\frac{\mathrm{E}_{\mathrm{bc}}}{\sqrt{3}}=\frac{\mathrm{E}_{\mathrm{ac}}}{\sqrt{3}}
$$

Figure 1.3: Three-Phase System: (1) Delta, (2) Wye

Voltages between the phases vary depending on loading factors and the quality of distribution transformers. The three-phase system is distributed in different voltage levels: 208V AC, 480V AC, 2400 V AC, 4160V AC, 6900V AC, 13800V AC, and so on.

Power measurement in a poly phase system is governed by Blondel's Theorem. Blondel's Theorem states that in a power distribution network which has N conductors, the number of measurement elements required to determine power is $\mathrm{N}-1$. A typical configuration of poly phase system has either a Delta connection or a Wye connection (see Figure 1.4, below).

Figure 1.4: Poly Phase System: (1) Delta, (2) Wye

1.3: Consumption, Demand and Poor Power Factor

CONSUMPTION: $\mathrm{WH}=\mathrm{W} \times \mathrm{T} \quad \mathbf{W}=$ instantaneous power $\mathbf{T}=$ time in hours The total electric energy usage over a time period is the consumption of WH.

Typically, the unit in which consumption is specified is the kilowatt-hour (KWH): one thousand watts consumed over one hour. Utilities use the WH equation to determine the overall consumption in a billing period.

DEMAND: Average energy consumed over a specified time interval. The utility determines the interval, typically 15 or 30 minutes. The utility measures the maximum demand over a billing period. This measurement exhibits a deviation from average consumption, causing the utility to provide generating capacity to satisfy a high maximum consumption demand. The highest average demand is retained in the metering system until the demand level is reset.

POOR POWER FACTOR: Results in reactive power consumption. Transferring reactive power over a distribution network causes energy loss. To force consumers to correct their Power Factor, utilities monitor reactive power consumption and penalize the user for Poor Power Factor.

1.4: Waveform and Harmonics

Ideal power distribution has sinusoidal waveforms on voltages and currents. In real-life applications, where inverters, computers, and motor controls are used, distorted waveforms are generated. These distortions consist of harmonics of the fundamental frequency.

SINUSOIDAL WAVEFORM: A• $\sin (\omega \cdot t)$
DISTORTED WAVEFORM: $A \bullet \sin (\omega \bullet t)+A_{1} \bullet \sin \left(\omega_{1} \bullet t\right)+A_{2} \bullet \sin \left(\omega_{2} \bullet t\right)+A_{3} \bullet \sin \left(\omega_{3} \bullet t\right)+\cdots$
TOTAL HARMONIC DISTORTION (THD):

$$
\% \text { of } \mathrm{THD}=\frac{\mathrm{RMS} \text { of Total Harmonic Distortion Signal }}{\mathrm{RMS} \text { of the Fundamenta I Signal }} \times 100
$$

HARMONIC DISTORTION: A destructive force in power distribution systems. It creates safety problems, shortens the life span of distribution transformers, and interferes with the operation of electronic devices. The DMMS 300+ and DMMS 350 monitor the harmonic distortion to the 31st harmonic. A waveform capture of distorted waveform is also available.

CHAPTER 2

MECHANICAL INSTALLATION

2.1: Explanation of Symbols:

2.2: Mechanical Installation

METER NOTES:

- To clean the meter, wipe it with a clean, dry cloth.
- Meter's environmental conditions:
- Operating Temperature: $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} /-4.0^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$
- Storage Temperature: $-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C} /-22^{\circ} \mathrm{F}$ to $+176^{\circ} \mathrm{F}$
- Relative Humidity: 90\% non-condensing
- Ventilation requirement: Natural convection cooling is adequate. Allow unobstructed airflow around the unit and monitor for a rise in temperature when the meter is installed in an enclosed cabinet.
- The meter has no specific protection against ingress of water.
- The rating of this meter requires all input and output terminals to be connected permanently: modification and maintenance of any kind should be performed only by qualified personnel.
- Rated Altitude: 2,000 meters maximum

These diagrams display the various possible mechanical installations and Communication Converter installation. The various models use the same hookup and installation.

Diagram 2.2: Installation with K-110 option for limited space conditions

Diagram 2.3: Standard cutout

Diagram 2.4: Optional Communication Converter or DC Output Module Installation

* Recommended wire gauge is 20 AWG for DC Output or RS485 options.

Note: Carefully line up the guide screw and 8 pin port connector to prevent pin breakage.

CHAPTER 3

ELECTRICAL INSTALLATION

3.1: Important Considerations When Installing Meters
 Please read the following sections carefully for important safety information regarding installation and hookup of the meter.

- This meter is rated as "permanently installed equipment" and must be installed in non-accessible areas only, e.g. control panels, switchgear enclosures, etc.
- Installation of the meter must be performed only by qualified personnel who follow standard safety precautions during all procedures. Those personnel should have appropriate training and experience with high voltage devices. Appropriate safety gloves, safety glasses and protective clothing are recommended.
- During normal operation of the meter, dangerous voltages flow through many parts of the meter, including: Terminals and any connected CTs (Current Transformers) and PTs (Potential Transformers), all I/O Modules (Inputs and Outputs) and their circuits. All Primary and Secondary circuits can, at times, produce lethal voltages and currents. Avoid contact with any currentcarrying surfaces.
- Do not use the meter for primary protection or in an energy-limiting capacity. The meter can only be used as secondary protection. Do not use the meter for applications where failure of the meter may cause harm or death. Do not use the meter for any application where there may be a risk of fire.
- All meter terminals should be inaccessible after installation.
- Do not apply more than the maximum voltage the meter or any attached device can withstand. Refer to meter and/or device labels and to the Specifications for all devices before applying voltages. Do not HIPOT/Dielectric test any Outputs, Inputs or Communications terminals.
- EIG recommends the use of Shorting Blocks and Fuses for voltage leads and power supply to prevent hazardous voltage conditions or damage to CTs, if the meter needs to be removed from service. CT grounding is optional.
- The UL Measurement Category of the meter is Category III, Pollution Degree II.
- Refer to additional safety notes on the next page.

NOTES:

- IF THE EQUIPMENT IS USED IN A MANNER NOT SPECIFIED BY THE MANUFACTURER, THE PROTECTION PROVIDED BY THE EQUIPMENT MAY BE IMPAIRED.

- THERE IS NO REQUIRED PREVENTIVE MAINTENANCE OR INSPECTION NECESSARY FOR SAFETY. HOWEVER, ANY REPAIR OR MAINTENANCE SHOULD BE PERFORMED BY THE FACTORY.
- DISCONNECT DEVICE: THE FOLLOWING PART IS CONSIDERED THE EQUIPMENT DISCONNECTING DEVICE. A SWITCH OR CIRCUIT-BREAKER SHALL BE INCLUDED IN THE END-USE EQUIPMENT OR BUILDING INSTALLATION. THE SWITCH SHALL BE IN CLOSE PROXIMITY TO THEEQUIPMENT AND WITHIN EASY REACH OF THE OPERATOR. THE SWITCH SHALLBE MARKED AS THE DISCONNECTING DEVICE FOR THE EQUIPMENT.

3.1.1: Measurement Inputs Rating:

UL Classification: Measurement Category III, Pollution Degree II.
Current Inputs: 10A max.
Voltage Inputs ${ }^{1}$: 150 V L-N, 300 V L-L
Frequency: (45 to 75) Hz
${ }^{1}$ Suffix - G extends the maximum direct voltage to 300 V phase to neutral, 600 volt phase to phase. Models with suffix - G are not UL rated.

3.2: Connecting the Current Circuit

Install the wiring for the current at 600 V AC insulation as a minimum. The cable connector should be rated for 6 Amps or greater and have a cross-sectional area of 16 AWG minimum.

Mount the current transformers (CTs) as close as possible to the meter for best accuracy. The following table illustrates the maximum recommended distances for various CT sizes, assuming the connection is via 16 AWG cable.

CT Size	Maximum Distance (CT to Meter)
2.5 VA	10 FEET
5.0 VA	15 FEET
7.5 VA	30 FEET
10.0 VA	40 FEET
15.0 VA	60 FEET
30.0 VA	120 FEET

Table 3.1: CT Size and Maximum Distance
WARNING:
DO NOT leave secondary of the CT open when primary current is flowing. This causes high voltage that will overheat the secondary of the CT. Use a shorting block on the secondary of the CT.

3.3: CT Connection

When the meter is connected using the CTs, you must maintain the correct CT polarities. CT polarities are dependent upon correct connections of CT leads, and upon the direction the CTs are facing when clamped around conductors. The dot on the CT must face the line side; the corresponding secondary connection must connect to the appropriate input on the meter. Failure to connect CTs properly results in inaccurate power readings. If your meter is not reading power properly, it is more than likely the CT is incorrectly wired.

Note: CTs are shorted if connected to the terminal block model DSP2 or 3, even if it is detached from the meter.

HELPFUL DEBUGGING TOOLS

Option 1: Isolating a CT Connection Reversal power reading

If your meter does not read the correct watts after installation, it almost always means that the CT's have been wired in the wrong polarity. To check the polarity of the CT after the monitor has been installed, look at the single phase WATT readings to see that each of the readings are positive (assuming you are consuming power). If one of the WATT readings is negative, that particular phase CT is reversed. To check the single phase WATT reading, press the Power button twice while the annunciator is positioned to WATTS. Then press the Phase/Next button to cycle through the phases. After connecting the polarity of the CTs, the WATT and VAR readings should be correct.

Option 2: Isolating a CT Connection Reversal using voltage readings
$\Rightarrow \quad$ Remove potential connections to terminals 6 and 7. Observe the KW reading. It should be positive.
$\Rightarrow \quad$ If negative, reverse the CT wires on terminals 8 and 9 .
Connect terminal number 6 potential. If KW decreases to about zero, reverse CT wires on terminals 10 and 11.

Connect terminal number 7 potential. If KW is one-third of expected reading, reverse CT wires to terminals 12 and 13.

3.4: Connecting the Voltage Circuit

For proper meter operation, the voltage connection must be maintained. The voltage must correspond to the correct terminal.

The cable required to terminate the voltage sense circuit should have an insulation rating greater than 600 V AC and a current rating greater than 0.1 A .

3.5: Selecting the Voltage Fuses

We strongly recommend using fuses on each of the sense voltages and the control power, although connection diagrams do not show them. Use a 1 Amp fuse on each voltage input.

3.6: Connection to the Main Power Supply

The meter requires separate control power to operate. Listed are the four different power supply options and corresponding suffixes. The maximum power consumption is 10 VA or 7 W . AC unit's frequency rating is $50 / 60 \mathrm{~Hz}$.

CONTROL POWER	OPTION SUFFIX
120 V AC	115 A
230 V AC/DC	230 A
$24-48 \mathrm{~V}$ DC	D
125 V AC/DC (universal)	D 2

Table 3.2: Control Power and Current
Note: For DC-powered units, polarity should be observed. Connect the negative terminal to L and positive terminal to L1. An earth ground connection to chassis is mandatory for normal operation (terminal three). Do not ground the unit through the negative of the DC supply.

Note: Externally fuse power supply with a slow-blow 3 Amp fuse.

3.7: Electrical Connection Installation

Choose the diagram that best suits your application and maintain the CT polarity. Follow the outlined procedure to verify correct connection. IMPORTANT: For PT connections only, short terminals 3 and 4. Connect local ground to terminal 3. This protects the unit from spikes and transients.

- The meter and terminal module DSP3 are factory calibrated together; the serial numbers are matched on both. The DSP3 input module and the meter base MUST MATCH!
- Mismatching of the meter and DSP3 input module will cause inaccurate readings because calibration ratios are stored in the meter's memory, not in the DSP3 input module.

LIST OF CONNECTION DIAGRAMS

NOTE: See phase reversal if a message of CBA appears after installation.
I Three-Phase, Three-Wire System Delta with Direct Voltage and CTs
II Three-Phase, Three-Wire Open Delta with two CTs and two PTs
(Open Delta System should only be used if the electrical system is a 3-wire 2 PT OPEN DELTA Open Delta can be enabled or disabled in Programming GROUP 0, FUNCTION 3, Chapter 9, section 9.4)

III Three-Phase, Three-Wire Open Delta with three CTs and two PTs
IV Three-Phase, Four-Wire Wye with Direct Voltage and CTs
V Three-Phase, Four-Wire Wye with CTs and PTs
VI Single Phase with CT and PT Connection
VII Dual-Phase System
VIII Three Phase System

I. Three Phase, Three-Wire System Delta with Direct Voltage and CTs

Note: Remember to make sure Open Delta bit is programmed in the meters (See Chapter 9).

II. Three-Phase, Three-Wire Open Delta with two CTs and two PTs

Note: Remember to make sure Open Delta bit is programmed in the meter (see section 9.4).

III. Three-Phase, Three-Wire Open Delta with three CTs and two PTs

Note: Remember to make sure Open Delta bit is programmed in the meter (see Chapter 9).

IV. Three-Phase Four-Wire Wye with Direct Voltage and CTs

V. Three Phase Four-Wire Wye with CT and PTs

The DMMS-S

The DMMS-S is essentially the DMMS, where through the Programming Mode calculations are changed to reflect either Single Phase or Dual Phase readings.

Single Phase-The connection MUST be identical to Diagram VI.
Dual Phase-The connection MUST be identical to Diagram VII.
Program 1 for Single Phase or 2 for Dual Phase in GROUP 0, FUNCTION 7 to remove Three-Phase indicators from view.

VI. Single Phase with CT and PT Connection

VII. Dual-Phase with CTs and PTs

VIII. Three-Phase Four-Wire WYE with 2.5 Element

Note: The 2.5 element option must be custom configured from the factory. You must preorder this configuration.

3.8: Relay, Protection and Pulse Output

(This section applies only to the -NL Relay Option.)

DMMS300+ AND DMMS 350 RELAY OVERVIEW

The DMMS 300+ and DMMS 350 offer dry contact relay output capability. The DMMS425 only offers KYZ pulse outputs and cannot be configured to trip contacts on events.

FAIL-SAFE MODE: The DMMS 300+ and DMMS 350 -NL Option give the user an adjustable tripping bandwidth. The user specifies a range over which functions, such as Frequency, Phase Relation and Voltage, are acceptable. The relay releases during times of normal operation and engages when functions are outside specified normal levels. The relay can be programmed to engage during normal operating conditions and release outside specified normal range (particularly when power is lost). This is the fail-safe mode.

HYSTERISIS: The DMMS 300+ and DMMS 350 -NL Option also includes adjustable hysterisis. In addition to a time delay on activating any contact, the user may specify a lower level to release the relay, rather than releasing after the initial alarm point. This is ideal during load shedding when an alarm activates at a certain level and the user does not want to turn off the alarm until a much lower, safer level is reached.

SETABLE DELAYS: After reaching the alarm point, a change in relay status may be delayed for 255 seconds. The user also has the option of allowing the device to change relay status without any delay. After the alarm condition passes, the relay can be stopped from returning to a normal condition for a programmable time. Each delay time is independent of one another.

ANDIOR LOGIC: If several parameters are assigned to one relay, the user can trip the relay if all functions are out of limit (and programming), or if one function is out of limit (or programming). For example, if limits on Voltage, Kilowatts, and Phase Imbalance are programmed and tied to Relay 1, the user can either trip the relay if one function is out of limit, or if all functions are out of limit.

2 RELAYS \& 1 KYZ PULSE OUTPUT -NL OPTION

The DMMS 300+ and DMMS 350's flexibility accesses a variety of relay options through the Programming Mode (see programming sections). The relay option package consists of three relays: two can be dedicated to alarm or controlled through communication (or both) and one for KYZ pulse output.

If the relays are controlled through communication, there are two different modes:

- Lock ON Relay will not be affected by any alarm condition.
- Lock OFF Relay will not be affected by any alarm condition.

If the relays are used for communication and alarm, there are four different modes:

- Lock ON Relay stays on regardless of any alarm condition.
- Lock OFF Relay stays off regardless of any alarm condition.
- Free ON Relay turns on unless other conditions force it off.
- Free OFF Relay turns off unless other conditions force it on.

Relay connection (see Figure 3.1, below): Form C relays, rated 250V, 5A-2 each.

KYZ relay output (Form C), rated 200V, 100mA-1 each.

Figure 3.1: Close-up of the Relay and KYZ pulse output on the rear panel.
Note: The relays shown in the figure above are in the NOT energized state.
THE INSTRUMENT DETECTS TWO LEVELS OF ALARM FOR THE FOLLOWING FUNCTIONS:

- Voltage: AN, BN, CN, AB, BC, CA
- Current: A, B, C, N
- Over and Reverse Power
- Under PF/KVAR Lead or Lag
- Over KVA
- Voltage Imbalance (One level only)
- Over/Under Frequency
- Voltage Phase Reversals (One level only)
- Over/Under \%THD (Available only with option -H)
- Over/Under K-Factor

KYZ RELAYS: Provides pulses for energy management systems or any other type of recording device. These pulses represent accumulated watt-hour, negative watt-hour, or VA-hour. Accomplish this assignment through the Programming Mode (see programming sections). The pulse value is determined by the decimal increment of the power function assigned to the pulse. The DMMS425 can be equipped with KYZ pulse outputs.

NOTE: Unless otherwise specified, standard KYZ setup represents positive watt hour. See table below for standard rate. The scale factor for wattage (KW or MW) and Full Scale Decimal Point Placement is selectable in Programming Mode GROUP 1, FUNCTION 2. Follow the Decimal Point Placement corresponding to the Change in Level. A multiplication or division factor can be programmed. See Programming GROUP 0, FUNCTION 6 for a different rate.

STANDARD RATE TABLE FOR WATTS*

DECIMAL POINT PLACEMENT (KW/MW)	CHANGE IN LEVEL
9999.	1.0 Units W-Hour
999.9	0.1 Units W-Hour
99.99	0.01 Units W-Hour
9.999	0.001 Units W-Hour

*Units could be KiloWatts or MegaWatts.

3.9: KYZ Pulse Outputs: NL2 Option

The -NL2 Option for the meter is equipped with three KYZ outputs. The KYZ relays provide pulses for energy management systems or any other type of recording device. These pulses represent accumulated positive watt-hour, negative watt-hour, VA-hour, positive VAR-hour or negative VAR-hour. Accomplish this through Programming Mode GROUP 0, FUNCTION 6. The pulse value is dependent
upon the Decimal Point Placement and is determined by the decimal increment of the power function assigned to the pulse. Refer to the situation that applies to the meter setting.

Note: Unless otherwise specified, standard KYZ setup for Pulse Output 0 is positive Watt Hour, Pulse Output 1 is negative Watt-Hour, and Pulse Output 2 is VA-hour. See table below for standard rate.

Note: With Option R (available only with the DMMS300) the setup for Pulse Output 0 is positive Watt-Hour, Pulse output 1 is positive VAR-hour, and Pulse output 2 is negative VAR-hour.

The scale factor for Wattage (KW or MW) and Full Scale Decimal Point Placement is selectable in Programming Mode GROUP 1, FUNCTION 2. Follow the Decimal Point Placement corresponding to the Change in Level. A multiplication or division factor can be programmed. See Programming GROUP 0, FUNCTION 6 for a different rate.

STANDARD RATE TABLE FOR WATTS*

DECIMAL POINT PLACEMENT (KW/MW)	CHANGE IN LEVEL
9999.	1.0 Units W Hour
999.9	0.1 Units W Hour
99.99	0.01 Units W Hour
9.999	0.001 Units W Hour

*Units could be KiloWatts or MegaWatts.

Figure 3.2: KYZ Relay Connection for -NL2 Option
KYZ relay output (Form C), rated 200V, 100mA: 3 separate KYZ Outputs (labeled 0 through 2).

CHAPTER 4

COMMUNICATION INSTALLATION

4.1: RS232C

(This section applies to the RS232C or RS485.)
All DMMS instruments can be equipped with RS232C or RS485 communication.
RS232C communication links a single instrument with a computer or device such as an RTU or PLC. Its capability is up to 100 feet. A standard 9 -pin female serial port connector mounts on the instrument for direct connection to a computer with a 9 -pin cable.

Figure 4.1: RS232C Communication Connection Installation
Note: To avoid ground loops, the neutral and safety ground (pin 3) should be connected together at only one point.

4.2: RS485

Each DMMS instrument has a unique address up to four digits long. Available standard baud rates are $1200,2400,4800$ and 9600 . To select the proper baud rate, apply the following rules:

1. The unit operates up to 9600 baud. For a smaller number of instruments over a long distance, use a lower baud rate. Optimal recommended baud rate is 1200 baud, if noisy conditions exist.
2. RS485 parallels multiple instruments on the same link. Its operating capability is up to 4000 feet. When using only 2 wires (on RS485), the link can include up to 30 instruments.

Figure 4.2: 2-Wire RS485 Communication Connection Installation half duplex -Detail view on following page

Figure 4.4: 2-Wire RS485 Communication Connection Installation half duplex, detail view

4.3: Network of Instruments and Long Distance Communication

Use modems (dedicated or dial-up) when the instruments are located at great distances. However, set the modem to auto answer at the recommended value of 1200 baud rate, if noise conditions exist. Also, flow control must be disabled.

You may want to use a Modem Manager RS485-RS232 Converter
When speaking to most RS485 or RS232C based devices, the remote modem must be programmed for the communication to work. This task is often quite complicated because modems are quirky when talking to remote devices. To make this task easier, EIG has designed a Modem Manager RS485 to RS232C converter. This device automatically programs the modem to the proper configuration. Also, if you have poor telephone lines, modem manager acts as a line buffer, making the communication more reliable.

I. MODEM CONNECTED TO COMPUTER (ORIGINATE MODEM) Programming the Modem

Comply with the modem's instruction manual and follow these instructions:
Restore Modem to Factory Settings:

- This procedure erases all previously programmed settings.

Set Modem to Display Result Codes:

- The device uses the result codes.

Set Modem to Verbal Result Code:

- The device uses the verbal codes.

Set Modem to Ignore DTR Signal:

- Necessary for the device to ensure connection with originate modem.

Set Modem to Disable Flow Control:

- Necessary to communicate with remote modem connected to device.

Tell Modem to Write the New Settings to Activate Profile:

- Places these settings into nonvolatile memory; the settings take effect after the modem powers up.

II. MODEM CONNECTED TO THE DEVICE (REMOTE MODEM) Programming the Modem

Comply with the modem's instruction manual and follow these instructions:

Restore Modem to Factory Settings:

- This procedure erases all previously programmed settings.

Set Modem to Auto Answer on N Rings:

- Sets the remote modem to answer the call after \mathbf{n} rings.

Set the Modem to Auto Negotiate Mode:

- Sets the remote to auto negotiate to communicate successfully with DMMS 300+ AND DMMS 350 and other devices in the modem.

Set Modem to Return Numeric Result Codes:

- Increases speed connection with DMMS 300+ AND DMMS 350.

Set Modem to Ignore DTR Signal:

- Necessary for device to ensure connection with originate modem.

Set Modem to Disable Flow Control:

- Necessary to communicate with remote modem connected to DMMS 300+ AND DMMS 350.

Tell the Modem to Write the New Settings to Activate Profile:

- Places new settings into nonvolatile memory; settings take effect after the modem powers up.

Debugging Communication Problems

If you experience NO communication, check these conditions:

- Is the Baud Rate set correctly (see Part II: Programming Section)?
- Is the Meter Address set correctly (see Part II: Programming Section)?
- Is the correct protocol set? Modbus, DNP 3.0?
- Set the meter for the appropriate protocol for the Electro Industries software.

CHAPTER 5

OVERVIEW

The DMMS 300+ and DMMS 350 display 17 instantaneous electrical parameters. Values for each parameter are accessed through the keypad on the meter's front panel (see Figure 5.1). The DMMS425 accesses information in the same manner as the DMMS 300+ and DMMS 350. The key strokes for each model are identical.

VoLTS	Amps	Power A, B, C
A-N	A	$\pm \mathrm{KW}$
B-N	B	$\pm \mathrm{KVAR}$
C-N	C	KVA
A-B	N	\pm PF
B-C		FREQ
C-A		\pm TOTAL KWH

Figure 5.1: The DMMS300+ front panel with display and keypad.

5.1: Accessing the Power Functions

Step 1:
a. Press POWER to select the power category.
\Rightarrow The display blanks and all annunciators in the power section glow, confirming selection.

Step 2:
a. Press PHASE/NEXT for the desired power function.
\Rightarrow The functions are accessed in a clockwise sequence.

Note: For KWH readings: The first digit on the left of the KWH counter will blank out on the display when rollover at 199999 KWH occurs. The actual value of the first digit can only be viewed through digital communications. Or, reset the KWH counter to zero to avoid confusion.

5.2: Accessing Voltage and Current Phases

The DMMS 300+ and DMMS 350 display four current measurements (Phases A, B, C and Neutral) and six voltage measurements (Phase-to-Phase: A-B, B-C, C-A and Phase-to-Neutral: A-N, B-N, C-N).

Step 1:
a. To select the Amps (or Volts) category, press AMPS (or VOLTS).
\Rightarrow The display blanks and all annunciators in the section glow, confirming selection.

Step 2:
a. Press PHASE/NEXT for the desired phase.

5.3: Accessing \%THD Functions

Harmonic Measurement readings are available on the DMMS300+ -H meter. The DMMS300+ -H displays 6 parameters of total harmonic distortion. It measures harmonic waveforms and \%THD for voltage phases A-N, B-N and C-N, and current phases A, B and C. Measurement capability reaches the $31^{\text {st }}$ harmonic order. All readings are faceplate accessible.

Step 1:
a. To access \%THD values for a voltage or current phase press VOLTS/THD (or AMPS/THD) twice.

\Rightarrow The display blanks and indicates the \%THD value momentarily.

5.4: Viewing Individual Phase Indication for Power Functions

The DMMS 300+ and DMMS 350 normally display a three-phase indication for PF, KW, KVAR, KVA readings. To view the individual phase A, B and C for those power functions follow the procedure below. This procedure is particularly useful for detecting a current transformer (CT) polarity reversal. A CT polarity reversal will result in a low or negative KW indication, while the KVA will be unaffected.

Step 1:
a. Press POWER to select power readings. Press PHASE/NEXT to select a specific power function (PF, KW, KVAR, KVA).

Step 2:

Press and hold the POWER button to scroll through the instantaneous single-phase power readings.

5.5: Accessing Max/Min Values

Max/min values represent the highest and lowest average demand over a user programmable time period known as the Integration Interval. The readings are calculated using a rolling average technique. Each second, a new reading is used to calculate the max/min; the last reading of the interval is dropped off. The highest max during an averaging period is stored until the user resets the max/min. This is similar to amp demand meters. It is commonly referred to as Thermal Demand.

To access a max/min value while displaying a desired measurement, press MAX/MIN/LIMITS—once for the max value; twice for the min. Examples given below are for voltage and current phases. Use the same procedure for all other parameters.

Step 1:
a. To select the Volts category, press VOLTS.
\Rightarrow The display blanks and all annunciators glow, confirming selection.

Step 2:
a. Press PHASE/NEXT for the desired phase.

Step 3:
a. Press MAX/MIN/LIMITS once to view the maximum reading for Volts C-N.
\Rightarrow The display blanks and momentarily indicates the max value.

To access KW, KVAR and PF negative measurements indicating leading current, press MAX/MIN/LIMITS five times for negative max and six times for negative min.

5.6: Resetting Values

Use the reset function if a new value is desired. It is available in two different modes.
1.UNPROTECTED MODE: Allows quick and easy resetting of max/min values.
2.PROTECTED MODE: Prevents unauthorized resetting the max/min and totaled power functions.

Note: Even if the unprotected mode is selected during programming, the KWH and negative KWH are always in protected mode. The following examples are for the max/min.

UNPROTECTED RESET

To reset the min of Amps A:

Step 1:
a. If not already in the Amps category press AMPS, then PHASE/NEXT until desired phase is indicated.

Step 2:
a. Press MAX/MIN/LIMITS twice to access the min value for Amps A.

Step 3:
a. While the min value is displayed, press PHASE/NEXT to reset it.
\Rightarrow The display blanks; a checkmark appears confirming reset.
\Rightarrow Repeat this procedure for each value you wish to reset.

PROTECTED RESET

Step 1:
a. Press

MAX/MIN/LIMITS once to access max value; twice to access min value.

Step 2:
a. While the value is display, press PHASE/NEXT to commence protected reset.
\Rightarrow The display blanks, three dashes appear in middle display and digits begin scrolling in upper display. \Rightarrow The password is 005.

Step 3:
a. Press PHASE/NEXT \Rightarrow When the correct each time a password password is entered, a digit appears.
checkmark appears, confirming reset.

Step 1:
a. Press POWER once.
b. Press PHASE/NEXT for the desired hour function.
\Rightarrow This example uses KWH function.

Step 2:
a. Press

MAX/MIN/LIMITS

- once for positive hour reset
- three times for negative hour reset.
\Rightarrow Four question marks appear in lower display.

Step 3:
a. While the question \Rightarrow Checkmarks appear, marks are displayed, press PHASE/NEXT. A password entry is now required.
\Rightarrow The password is 005 .
b. Press PHASE/NEXT each time a password digit appears.
 indicating a successful reset.

5.8: Accessing the LM1/LM2 Set Limits

The DMMS 300+ and DMMS 350 have two manual set limits which monitor the instantaneous readings and warn the user of any abnormal conditions. Each limit detects readings either above or below a set level. The DMMS425 does not have this feature.

SET LIMITS: Point when the relay changes position, if the DMMS 300+ and DMMS 350 are equipped with the Relay Option (Suffix -NL).

If a limit is exceeded, only the annunciator for LM1 and/or LM2 flash.
To view the setup of the LM1/LM2 set limits:

- Press MAXIMIN/LIMITS 2 times. to view the LM1 set limit momentarily.
- Press MAX/MIN/LIMITS 3 times to view the LM2 set limit momentarily.
- To locate readings that exceeded Limit 1, press MAX/MIN/LIMIT 3 times and then press PHASE/NEXT. The display blanks, the middle display indicates $L 1$, and annunciators for parameters that exceeded Limit 1 illuminate.
- To locate readings that exceeded Limit 2, press MAX/MIN/LIMIT 4 times and then press PHASE/NEXT. The display blanks, the middle display indicates $L 2$, and annunciators for parameters that exceeded Limit 2 illuminate.

a. To access the set limit, press MAX/MIN/LIMITS
- 3 times for LM1
- 4 times for LM2

5.9: Voltage Phase Reversal and Imbalance

In a three-phase power distribution system, normal phase shift between each line is 120°. If the DMMS $300+$ and DMMS 350 detect an abnormality, they display a message of PH. The DMMS425 does not have this feature.

VOLTAGE PHASE REVERSAL: If there is an incorrect connection, such as mistaking line A for line B, a PH message appears. The correct sequence is a-b-c.

VOLTAGE PHASE IMBALANCE LIMIT: This is detected using the phase imbalance limit in the Programming Mode. The phase imbalance is expressed as a percentage, with 0% indicating a 120° phase shift between each line. A PH message appears if the limit is exceeded.

Step 1:
a. Press and hold down

PHASE/NEXT. While holding down
PHASE/NEXT, press
AMPS to access the display.
\Rightarrow (PH indicates both Voltage Phase
Reversals and Voltage
Phase Imbalances.)

Step 2:
a. Press PHASE/NEXT to select zero.

\Rightarrow This display indicates a Voltage Phase Reversal.

\Rightarrow This display indicates a Voltage Phase Imbalance.

Note: In the event Voltage Phase Reversal and Voltage Phase Imbalance occur simultaneously, the display alternates between the incorrect phase sequence and the exceeded limit percentage. After six seconds the display returns to the normal operating mode.

5.10: Access Modes

The following access commands allow the user to perform specific operations.

ACCESS COMMANDS	OPERATION
$\mathbf{1}$	Print Operating Data
$\mathbf{2}$	Print Programming Data
$\mathbf{3}$	Enter Programming Mode (see Programming Section)
$\mathbf{4}$	Firmware Version/LED Test

Note: Print commands 1 and 2 are only available if enabled in the programming mode; they are not recommended when using the multimeter connection RS485.

5.11 Print Operating Data

This function sends data to a serial printer, creating a hard copy of the instantaneous and max/min data of all functions and the WH, VAH and WH counters.

Note: This function applies only if a serial printer is connected to the DMMS 300+ or DMMS 350 via an RS232C Communication Converter.

To print the operating data:

Step 1:
a. Press and hold PHASE/NEXT.
b. Press AMPS until a 0 appears in the middle display.
c. Release both buttons.

Step 2:
a. Press AMPS until a 1 appears..
b. Press PHASE/ NEXT to select.

$\Rightarrow 111$ appears, confirming a successful print command.

5.12: Print Programming Data

This function sends the programming data (or the meter setup) to a serial printer for verification and quick reference.

To print the programming data:

Step 1:
a. Press and hold PHASE/NEXT.
b. Press AMPS until a 0 appears in the middle display.
c. Release both buttons.

Step 2:
\Rightarrow The display blanks.
$\Rightarrow 222$ appears, confirming a successful print command.

a. Press AMPS until a 2 appears.
b. Press PHASE/NEXT to select.

5.13: Accessing Firmware Version/LED Test

The DMMS 300+ and DMMS 350 access the firmware version number of the analog and digital microprocessors. The units also perform an LED test to check if the LEDs and annunciators are functioning properly.

Step 1:
a. Press and hold PHASE/NEXT.
b. Press AMPS until a $\mathbf{0}$ appears in the middle display.
c. Release both buttons

Step 3:
a. Press PHASE/NEXT for the LED test.
\Rightarrow All segments and annunciators glow.

Step 2:

a. Press AMPS until 4 appears.

Step 4:
a. Follow Steps 1 and 2, then press MAXIMIN/LIMITS for the firmware versions.

Firmware versions:

- Upper display-analog processor version
- Middle display-digital processor

6:1: General Procedure

Programming tasks are arranged into nine major GROUPS. Within each GROUP are the specific meter FUNCTIONS. Outlined is the general approach to alter programming mode values.

1. Enter the Programming Mode.
2. Select the desired GROUP.
3. Once the desired GROUP is selected, select a FUNCTION within the GROUP. For GROUP 0, some functions are further divided into PACKS containing four switches referred to as switches A, B, C, D (left to right).
4. After the FUNCTION selection, proceed with DATA ENTRY of the new value for the desired parameter.
5. Proceed to program another location and/or exit the programming mode.

IMPORTANT: The full exiting procedure must be followed to store any new programming.

6.2: Switch Packs

GROUPS, Functions, and Switch PACKS

- GROUPS are the main category.
- Functions are sub categories of GROUPS.
- Switch PACKS are sub categories of FUNCTIONS.

6.3: Programming Mode Data Entry

The DMMS 300+, DMMS 350 and DMMS425 programming mode utilizes only three out of the five keypad buttons: the MAX/MIN/LIMITS, VOLTS/THD, and AMPS/THD buttons.

Note: The DMMS 350 and DMMS425 use the same keypad strokes and methods as the DMMS 330+. Although the keypad may look slightly different, the keys match the DMMS300+ exactly. In the interest of brevity, all keystrokes and programming functions are shown using the DMMS300+ keyboard.

BUTTON	FUNCTION	DESCRIPTION
MAX/MIN/LIMITS	ADVANCES	Scrolls GROUPS, FUNCTIONS and advances to exit point from FUNCTION and GROUP level.
VOLTS/THD	CHANGES VALUE	Scrolls PACKS, digit counters and changes switch PACK position UP or DOWN.
AMPS/THD	STORES	Activates new data entry and enters or exits from GROUP or FUNCTION level.

6.4: Standard Numeric Data Entry

Programmable FUNCTION values are always four digit numerical fields designed to accept any value between 0000 and 9999 (a blank signifies a zero). When entering the value of a FUNCTION, enter all four digits, leading zeros included. For instance, to enter the number 25, enter 0025.

CHAPTER 7
 DMMS425

The DMMS425 is similar to the DMMS 300+ and DMMS 350 with the following exceptions:

1. The size of the display digits is smaller (0.300 " instead of 0.560 ").
2. The following features are not available:

- The energy readings: VA/H, VAR/H.
- The limits: Lim1 and Lim2, and dry contact relay outputs.
- The harmonics readings: \%THD and K-factor.

3. The layout of the keypad is slightly different (although the keys have exactly the same functions).

The DMMS425 Keypad
4. The unit's legend values are jumper-selectable: the user, if necessary, needs to open the cover and choose between V and KV, A and KA, Kilo (k) and Mega (M) for power relays.
5. The annunciators are highlighted one at a time.

NOTE: The Ethernet model, DMMS350, is covered in detail in Chapter 16 of this manual. See p. 44 for a comparison of the three models covered in this manual.

DMMS300+ vs. DMMS425 vs. DMMS350

Feature	300+	425	350
Voltage 3-Phase	\checkmark	\checkmark	\checkmark
Voltage Accuracy	0.2\%	0.3\%	0.2\%
Current 3-Phase and Neutral	\checkmark	\checkmark	\checkmark
Current Accuracy	0.2\%	0.3\%	0.2\%
Watts, VARS, VA, PF	\checkmark	\checkmark	\checkmark
Watts Accuracy	0.4\%	0.6\%	0.4\%
Frequency	\checkmark	\checkmark	\checkmark
Watt/HR	\checkmark	\checkmark	\checkmark
VAR/HR (Optional)	\checkmark		\checkmark
VA/HR	\checkmark		\checkmark
$\begin{aligned} & \text { Harmonics to } 31^{\text {st }} \\ & \text { Order } \end{aligned}$	\checkmark		\checkmark
Feature	300+	425	350
Max/Min Demand	\checkmark	\checkmark	\checkmark
Limits	\checkmark		\checkmark
Relays and Logic	\checkmark		\checkmark
Pulse Outputs	\checkmark	\checkmark	\checkmark
Digital Communication	\checkmark	\checkmark	\checkmark
Modbus RTU	\checkmark	\checkmark	
Modbus ASCII	\checkmark	\checkmark	
Analog Outputs	\checkmark		
Modbus TCP			\checkmark
Ethernet			\checkmark

CHAPTER 8

ENTERING PROGRAMMING MODE

8.1: Checksum Error—Protective Self-Checking Algorithms

This checksum error is a protective self-checking wealth algorithm designed to alert the user when a procedure has not been correctly followed, ensuring that the meter does not display inaccurate readings.

If the control power is interrupted while in Programming Mode or the user does not completely exit, the meter enters a checksum mode. The max LED flashes. Press AMPS and PHASE/NEXT simultaneously and the unit recovers. Follow the procedure to enter Programming Mode to check program data. If the data is correct, then exit.

8.2: Password Entry

The DMMS 300+, DMMS 350 and 425 are password protected. To enter the Programming Mode, key in the following password: 555.

The password entry may seem awkward at first. It is designed to be difficult to use initially. This secures against unauthorized tampering. After you become familiar with password entry, you will find it quick and easy to accomplish.

NOTE: The meter will not store any programming unless properly exited (see Chapter 14 to Exit).

Entering Programming Mode:

Step 1:
a. Press and hold PHASE/NEXT.
b. While holding PHASE/NEXT, press AMPS until a number appears in middle display. Then release both buttons.
\Rightarrow If $\mathbf{3}$ is not already displayed:
c. Press AMPS until 3 appears.
d. Press PHASE/NEXT to multiply the 3 to 333.
$\Rightarrow 333$ flashes momentarily in middle display.

Step 2:
\Rightarrow Digits begin scrolling in upper display.
$\boxed{\boxed{ }}$ The password is 555 .
a. Press PHASE/NEXT each time the digit 5 appears.
\Rightarrow Selected digits appear in middle display.

\Rightarrow Display blanks and PPP flashes in upper display, confirming a correctly entered password.
\Rightarrow PPP is replaced by 0 . and the meter is now in Programming Mode, GROUP 0.
\Rightarrow You are now in the Programming Mode. CONGRATULATIONS!

NOTE: AUTO SCROLLING will automatically show all of the readings on the face of the meter except LIMITS. To enter Auto Scrolling mode, follow the above steps except use the numbers 666 as the password. To exit Auto Scrolling mode, use the same procedure as described above.

CHAPTER 9

PROGRAMMING GROUP 0 - GLOBAL METER SETUP

The Global Meter Setup includes FUNCTIONS 0 through 7 that control configuration and basic operation. FUNCTION 3 System Configuration contains Switch PACKS with various options, including Open Delta installation, communications or DC Output setup. Global Meter Setup is the section in which general features are programmed.

FUNCTION NUMBER	Function
0.	Integration Interval
1.	Meter Address for Communication
2.	Baud Rate for Communication
3.	System Configuration (see Table 9-2)
4.	Relay 1 Set-up / Time delay
5.	Relay 2 Set-up / Time delay
6.	KYZ Parameter Selection
7.	Number of Phases
E.	Exit Programming GROUP 0

Table 9-1: Group 0 Programming Format

9.1: Group 0, Function 0-The Integration Interval

INTEGRATION INTERVAL: Time which all instantaneous readings are averaged to obtain a max and min demand. The Integration Interval is entered in seconds. When entering 15 minutes, enter: 0900 seconds. The default value is 900 seconds.

To change the Integration Interval:

NOTE: Press MAXIMIN/LIMITS at any time to cancel before storing the last digit or switch.

Step 1:
a. Enter Group Level of Programming Mode (see Chp. 8).
b. Press MAX/MIN/LIMITS until 0. appears in upper display.
c. Press AMPS to activate the Group.

[^0]

Step 2:
a. Press AMPS once to begin Data Entry Sequence.
\Rightarrow The previous value shifts to middle display and four dashes appear in lower display.
b. Press VOLTS for desired number.
c. Press AMPS to store.

9.2: Group 0, Function 1-The Meter Address

METER ADDRESS: Identifies the meter when communicating with digital communications. When numerous meters are at one site, it is essential that each meter have its own address. Otherwise, all meters speak at the same time and communication is useless.
NOTE: The DMMS 350 Address should be set to: 1

To change the Meter Address:

NOTE: Press MAX/MIN/LIMITS at any time to cancel before storing the last digit or switch.

Step 1:
a. Enter Group Level of Programming Mode (see Chp. 8).
b. Press MAX/MIN/LIMITS until 0. appears.
c. Press AMPS to activate the Group.

Step 2:
a. Press MAX/MIN/LIMITS until Function 01. appears in upper display.
\Rightarrow Lower display indicates the current Meter Address.

Step 3:
a. Press AMPS once to begin Data Entry Sequence. $\quad \Rightarrow$ Repeat this procedure until new Address is entered.
\Rightarrow The previous value shifts to middle display and four dashes appear in lower display.
b. Press VOLTS for desired number.
c. Press AMPS to store each digit.

\Rightarrow When complete, middle display blanks and lower display indicates new Address.

See Chapter 14 to Exit.

9.3: Group 0, Function 2—BAUD RATE

BAUD RATE: Speed at which data is transmitted between meter and remote computer or serial printer. The rate programmed into the meter must match the rate used by the remote device. Valid Baud Rates are 1200, 2400, 4800 and 9600. NOTE: The DMMS 350 Baud Rate should be set to: 9600

To change the Baud Rate:
NOTE: Press MAX/MIN/LIMITS at any time to cancel before storing the last digit or switch.

Step 1:

a. Enter Group Level of Programming Mode (see Chp. 8).
b. Press MAX/MIN/LIMITS until 0 . appears.
c. Press AMPS to activate the Group.

Step 2:
a. Press MAX/MIN/LIMITS until Function 02. appears in upper display.
\Rightarrow Lower display indicates current Baud Rate.

Step 3:
a. Press AMPS to begin Data Entry Sequence.
\Rightarrow The previous value shifts to middle display and four dashes appear in lower display.
b. Press VOLTS for desired number.
c. Press AMPS to store each digit.

\Rightarrow Repeat this procedure until new Communication Baud Rate is entered.
\Rightarrow When complete, middle display blanks and lower display indicates new Baud Rate.

See Chapter 14 to Exit.

9.4: Group 0, Function 3-System Configuration

The System Configuration sets the DMMS300+'s basic operational parameters. This Function utilizes Switch PACKS.

FUNCTION 3 contains four different Switch PACKS: 0-3. Each PACK contains four individual UP/DOWN segments.

- Toggling the segment between UP and DOWN, toggles the switch ON or OFF or chooses between two options.
- The meter displays one Switch PACK at a time.
\Rightarrow Press VOLTS to scroll from PACK to PACK.

PACK	SWITCH	FEATURE	SEGMENT POSITION
0	A	Reserved	-
	B	Reserved	-
	C	Reserved	-
	D	Phase Reversal Limit Detection	UP: Enable DOWN: Disable
1	A	Non-significant will blank leading zero	UP: Enable DOWN: Disable
	B	Reset Protection (see Part I: Installation and Operation)	UP: Enable DOWN: Disable
	C	Phase Reversal Rotation Selection	UP: CBA Rotation DOWN: ABC Rotation
	D	Open Delta Installation (see Part I: Installation and Operation)	UP: Enable DOWN: Disable
2	A	Limit/Relay Control	UP: Average DOWN: Instantaneous
	B	Power Factor Polarity Indicates + (voltage referenced) or - (current referenced)	UP: -PF DOWN: +PF
	C, D	For EI-BUS protocol: Switch C is DOWN, Switch D is D For MODBUS protocol, ASCII framing: Switch C is UP, For MODBUS protocol, RTU framing: Switch C is DOW (DMMS 350 Setting above) For DNP 3.0 protocol: Switch C is UP, Switch D is DO	WN. witch D is UP. Switch D is UP. N.
3	A	Trip Relay Computer Control 1 (Relay Control 1 and 2 apply only if Relay Option -NL was ordered.)	UP: Enable DOWN: Disable
	B	Trip Relay Computer Control 2 (Relay Control 1 and 2 apply only if Relay Option -NL was ordered.)	UP: Enable DOWN: Disable
	C	RS232 or RS485 Communications or Print	UP: Enable Communications DOWN: Enable DC Output
	D	DC Output (To operate DC Output, disable PACK 3, Switch C) or Print Operating and Programming Data (To print, set PACK 3 Switches C and D to UP position.)	UP: Enable DC Output or Print Communication DOWN: Disable DC Output and Print

Table 9-2: System Configuration—Switch Packs for Group 0, Function 3
NOTE: PACK 3 Switch Setting for DMMS 350:
C: UP - ENABLE COMMUNICATIONS
D: DOWN - DISABLE DC OUTPUT

OPEN DELTA SYSTEM INSTALLATION PROGRAMMING

A special switch is used to indicate that the electrical system being monitored is a Three-phase WYE or Three-Wire Open Delta System using the connection installation (see Chapter 3). The switch is located in GROUP 0, FUNCTION 3, Pack 1, Switch D.

WARNING: This switch should be set to UP only if the electrical system is a Three-Wire Delta or Open Delta, using 2 PTs. Otherwise, the switch should be set to DOWN. Failure to select this switch results in Phase-to-Neutral readings, as well as incorrect power readings, with the 2PT connection.

Special Open Delta Connection Installation should be followed in the Installation and Operation section (Chapter 3).

SWITCHING COMMUNICATION PROTOCOLS, EI-BUS, MODBUS RTUIASCII, DNP 3.0

- For EI-BUS protocol: PACK 2, Switch C is DOWN, Switch D is DOWN.
- For MODBUS protocol, ASCII framing: PACK 2, Switch C is UP, Switch D is UP.
- For MODBUS protocol, RTU framing: PACK 2, Switch C is DOWN Switch D is UP.
- For DNP 3.0 protocol: PACK 2, Switch C is UP, Switch D is DOWN.

NOTE: When programming for MODBUS protocol configuration of LIPA (Long Island Power Authority) mapping options may be performed through communication.

9.5 Modbus Plus Capability

When using the MPI Modbus Plus adapter, the meter values should be set to speak to Modbus RTU with a meter address of 0001 and a baud rate of 9600 baud. The Modbus Plus address is programmed into the MP1 Modbus Plus adapter directly.

PRINTING OPTION

To print, access Mode 1 and Mode 2 (see Part I: Installation and Operation). Printing serial options should be disabled when using a multimeter communications connection RS485.

DISABLING PREVENTS:

1. Printing through the keypad.
2. Corrupting data at a computer terminal while multiple meters poll.
3. Corrupting printing commands through communications.

This option connects a serial printer to the RS232 port and prints the data. Disable this feature when the meter is not using an RS232 port (i.e., when RS485 or DC outputs are being used).

9.6: Group 0, Function 3—Programming Procedure

To change the System Configuration Switch Settings:

NOTE: Press MAX/MIN/LIMITS, at any time, to cancel before storing the last digit or switch.

Step 1:
a. Enter Group Level of Programming Mode (see Chp. 8).
b. Press MAX/MIN/LIMITS until 0 . appears in upper display.
c. Press AMPS to activate the Group.

Step 3:
a. Press VOLTS until desired PACK appears.
b. Press AMPS to begin Data Entry Sequence.
\Rightarrow The previous Switch settings shift to middle display and four dashes appear in lower display.
c. Press VOLTS to toggle the segments up or down for desired setting.
d. Press AMPS to store each setting.

Step 2:

a. Press MAX/MIN/LIMITS until Function $\mathbf{0 3 . 0}$ appears in upper display.
\Rightarrow Lower display indicates current PACK 0 Switch Settings.

[^1](This example shows enabling of Open Delta Installation switch).

See Chapter 14 to Exit.

9.7: Relay Mode

NOTE: Relays are not available for the DMMS425.

SWITCH	DESCRIPTION	Segment Position
A	Reversal Imbalance Control	UP』Enable DOWN \Rightarrow Disable
B	AND/OR Logic	UP AND DOWN
C \& D OR		

Table 9-3: SWITCH PACKS for 04P \& 05P
The Switch PACKS in FUNCTIONS 4 and 5 of programming GROUP 0 control the relay position. Setting the switches in different combinations allows the user to specify the conditions in which the relay will be "SET" or "RESET." The following table indicates possible configurations.

SWITCH C	SWITCH \mathbf{D}	DESCRIPTION
UP	UP	FAIL-SAFE MODE-The normal or non-event condition is set. RESET relay on either out of limit condition. Relay acts as a protective switch if power is interrupted. This alerts the user if the meter or the meter power is out.
UP	DOWN	N/A (Reserved for future features).
DOWN	UP	N/A (Reserved for future features).
DOWN	DOWN	RESET MODE-The normal or non-event condition is reset. SET relay on either out of limit condition.

Table 9-4

DEFINITIONS:

RESET: There is a short between "COM" and "N.C." (Normally closed)
SET: There is a short between "COM" and "N.O." (Normally open)
(See Part I: Installation and Operation.)

Example 1: Fail-safe mode normally set—non-event condition is set relay
Relay 1 will be "SET" if the instantaneous reading for frequency is between 58 Hz and 62 Hz . When all other conditions exist, the relay will "RESET."

NOTE: Under this setup the relay acts as a protective switch.

PROGRAMMING STEPS:

1. Enter in GROUP 0, FUNCTION 4, PACK 'P', Segment C and D: UP, UP.
2. Enter in GROUP 5, FUNCTION 4, LIMIT 1, Segments B, C, and D: DOWN, UP, DOWN. Value: 58.00.
3. Enter in GROUP 5, FUNCTION 4, LIMIT 2, Segments B, C, and D: UP, UP, DOWN. Value: 62.00.

Example 2: Normally reset-non-event condition is reset relay
Relay 1 will be "SET" if the instantaneous reading for amps is below 4.00 or above 5.00 amps . Under all other conditions the relay will be "RESET".

NOTE: Under this setup the relay will NOT act as a protective switch.

PROGRAMMING STEPS:

1. Enter in GROUP 0, FUNCTION 4, PACK 'p', Segments C and D: DOWN, DOWN
2. Enter in GROUP 4, FUNCTION 2, LIMIT 1, Segments: B, C, and D: UP, UP, DOWN. Value: 5.00
3. Enter in GROUP 4, FUNCTION 2, LIMIT 2, Segments: DOWN, UP, DOWN. Value: 4.00

GROUP 0—FUNCTION NUMBER	DESCRIPTION
$\mathbf{0 4 . P}$	Controls Relay 1
$00 . P$	Controls Relay 2 (and 3 if NL4)

Relay Mode: Group 0, Functions 4-5

To change the Relay Mode to either Fail-safe or Reset:
NOTE: Press MAX/MIN/LIMITS at any time to cancel before storing the last digit or switch.

Step 1:

a. Enter Group Level of Programming Mode (see Chp. 8).
b. Press MAX/MIN/LIMITS until $\mathbf{0}$. appears in upper display.
c. Press AMPS to activate the Group.

Step 3:
a. Press AMPS to begin Data Entry Sequence.
\Rightarrow The previous setting shifts to middle display and four dashes appear in lower display.
b. Press VOLTS for desired switch position.
c. Press AMPS to store each setting.

Step 2:

a. Press MAX/MIN/LIMITS until 04.P (for Relay 1) or 05.P (for Relay 2) appears in upper display.
\Rightarrow Lower display indicates current setting.

\Rightarrow Repeat this procedure until new switch setting is entered.
\Rightarrow When complete, middle display blanks and lower display indicates the programming.

See Chapter 14 to Exit.

9.8: Group 0, Functions 4-5-Time Delay for Relays 1 and 2 (Option - NL)

GROUP 0, FUNCTIONS 4-5 sets the time delay for Relays 1 and 2 between 0 and 255 seconds. This allows conditions (example below) to exist for a user-specified time period before the relay or alarm activates. If a time greater than 255 seconds is entered, the meter defaults to the maximum value of 255 seconds.

Example: If Relay 1 is set for 300 amps and the amps increase to 301, the Relay trips only after a programmed delay period. If the meter then measures 299 Amps , the Relay returns to its original position, after the programmed delay.

Relay 1: Located in 04.0 \& 04.1.
Relay 2: Located in 05.0 \& 05.1.
(Procedures for both relays are the same).

GROUP AND FUNCTION NUMBER	DESCRIPTION
04.0	Relay 1: On to Off Delay Time
04.1	Relay 1: Off to On Delay Time
05.0	Relay 2: On to Off Delay Time
$\mathbf{0 5 . 1}$	Relay 2: Off to On Delay Time

To change Time Delays:

NOTE: Press MAX/MIN/LIMITS at any time, to cancel before storing the last digit or Switch.

Step 1:
a. Enter Group Level of Programming Mode (see Chp. 8).
b. Press MAX/MIN/LIMITS until $\mathbf{0}$. appears in upper display.
c. Press AMPS to activate the Group.

Step 2:
To program Relay 1:
a. Press MAX/MIN/LIMITS until Function 04.P appears in upper display.

To program Relay 2 and 3:

a. Press MAX/MIN/LIMITS until Function 05.P appears.
b. Press VOLTS once to display $\mathbf{0 4 . 0}$ (On to Off delay time).
c. Press VOLTS twice to display 04.1 (Off to On delay time).
\Rightarrow Lower display indicates current Time Delays.

\Rightarrow Repeat this procedure until new Time Delay is entered.
\Rightarrow When complete, middle display blanks and lower display

Indicates the new Time Delay.
See Chapter 14 to Exit.

9.9: Group 0, Function 6-KYZ Parameter Selection

NOTE: FUNCTION 6 applies only if Option -NL or -NL2 was ordered.
OPTION -NL: This option gives the meter 2 Relays and one KYZ pulse. The KYZ pulse can be programmed to the below features.

Select a single parameter from Table 9-5 according to the DMMS 300+ and DMMS 350 model being programmed.

OPTION -NL2: This option offers 3 distinct KYZ pulses instead of Relays.
Only three separate parameters may be selected: FUNCTION 6.0 (KYZ Port 0), FUNCTION 6.1 (KYZ Port 1), and FUNCTION 6.2 (KYZ Port 2). The available parameters vary according to the DMMS 300+ and DMMS 350 model being programmed. For exact port positions see Installation Sections.

PARAMETER	DESCRIPTION	
0	Disable KYZ	
1	Positive Watt Hour KYZ	
2	VA Hour KYZ	
3	Negative Watt Hour KYZ	
4	Positive VAR Hour KYZ	
5	Negative VAR Hour KYZ	
Table 9-5: KYZ Parameters		

APPLICABLE SELECTIONS: $300+-+\mathrm{WH},-\mathrm{WH}, \mathrm{VAH}$
300+R* - +WH, -WH, +VARH, -VARH

* (-R option gives the 300+ VAR/Hour readings instead or VA/Hours).

To perform the KYZ Parameter Selection:
NOTE: Press MAX/MIN/LIMITS at any time to cancel before storing the last digit or switch.

Step 1:
a. Enter Group Level of Programming Mode (see Chp. 8).
b. Press MAX/MIN/LIMITS until 0. appears in upper display.
c. Press AMPS to activate the Group.

Step 3:
a. Press VOLTS once and 06.0 appears in upper display.
\Rightarrow Middle display indicates preset value
\Rightarrow Lower display indicates polarity of selected parameter and an annunciator indicates the selected parameter.

Step 2:
a. Press MAX/MIN/LIMITS until 06.P appears in upper display.
(Standard Selection is 1).

Step 4:
a. Press AMPS once to select a different parameter.
b. Press MAX/MIN/LIMITS to increase the parameter number
-or-
c. Press VOLTS to decrease (until desired parameter appears).
d. Press AMPS to store.
\Rightarrow A decimal appears in upper level. (Models with -NL Option, FUNCTION 6 is complete).

Applies to -NL2 Option only:

 Step 5:a. Press VOLTS to proceed to another port (06.1 or 06.2).
\Rightarrow Repeat this procedure to change parameters.

See Chapter 14 to Exit.

$\begin{aligned} & \text { SELECTION } \\ & \text { IN 06P } \end{aligned}$	KYZ PULSE VALUE PER WATT HOUR FSW=9999.	KYZ PULSE VALUE PER WATT HOUR FSW=999.9	KYZ PULSE VALUE PER WATT HOUR FSW=99.99	KYZ PULSE VALUE PER WATT HOUR FSW=9.999
Multiply by 1	1.0 unit WH	0.1 unit WH	0.01 unit WH	0.001 unit WH
Multiply by 2	0.5 unit $\mathrm{WH}^{\text {© }}$	0.05 unit $\mathrm{WH}^{\text {® }}$	0.005 unit WH	0.0005 unit WH
Multiply by 10	0.1 unit WH	0.01 unit WH	0.001 unit WH	0.0001 unit WH
Multiply by 20	0.05 unit WH	0.005 unit WH	0.0005 unit $\mathrm{WH}^{\text {® }}$	0.00005 unit $\mathrm{WH}^{\text {® }}$
Divide by 1	1.0 unit WH	0.1 unit WH	0.01 unit WH	0.001 unit WH

Divide by 2	2.0 unit WH	0.2 unit WH	0.02 unit WH	0.002 unit WH
Divide by 10	10.0 unit $\mathrm{WH}^{ब}$	1.0 unit $\mathrm{WH}^{ब}$	0.1 unit WH	0.01 unit WH
Divide by 20	20.0 unit WH	2.0 unit WH	0.2 unit $\mathrm{WH}^{ब}$	0.02 unit $\mathrm{WH}^{ब}$

Table 9-6: KYZ Pulse Value
NOTE: The unit WH refers to the counter value on the meter, where the unit equals Kilo or Mega user-defined.
The FSW number is used only for decimal point placement (see Chapter 10).

HOW TO USE KYZ PULSE VALUE TABLE FOR MULTIPLICATION:

Situation 1: FSW=9999.

- Selection is Multiply by 2
- This means that every 5 unit WH =1 pulse.
- Unit=Kilo (see Group 1, Function 2)
- Result: For every 1 KWH increment on the counter, the meter will output 2 pulses.

Situation 3: FSW=99.99

- Selection is Multiply by 20
- This means that every .0005 unit WH=1 pulse.
- Unit=Kilo (see Group 1, Function 2)
- Result: For every 1 KWH increment on the counter, the meter will output 2,000 pulses.

SITUATION 2: FSW=999.9

- Selection is Multiply by 2
- This means that every 05 unit WH=1 pulse.
- Unit=Kilo (see Group 1, Function 2)
- Result: For every 1 KWH increment on the counter, the meter will output 20 pulses.

Situation 4: FSW=9.999

- Selection is Multiply by 20
- Unit=Kilo (see Group 1, Function 2)
- This means that every $.00005 \mathrm{WH}=1$ pulse.
- Result: For every 1 KWH increment on the counter, the meter will output 20,000 pulses.

HOW TO USE THE KYZ PULSE VALUE TABLE FOR DIVISION:

Situation 1: FSW=9999.

- Selection is Divide by 10
- This means that every 10 unit $\mathrm{WH}=1$ pulse.
- Unit=Kilo (see Group 1, Function 2)
- Result: For every 10 KWH increment on the counter, the meter will output 1 pulse.

SITUATION 3: FSW=99.99

- Selection is Divide by 20
- This means that every .2 unit WH=1 pulse.
- Unit=Kilo (see Group 1, Function 2)
- Result: For every 1 KWH increment on the counter, the meter will output 5 pulses.

Situation 2: FSW=999.9

- Selection is Divide by 10
- This means that every 1 unit WH=1 pulse.
- Unit=Kilo (see Group 1, Function 2)
- Result: For every 1 KWH increment on the counter, the meter will output 1 pulse.

Situation 4: FSW=9.999

- Selection is Divide by 20
- Unit=Kilo (see Group 1, Function 2)
- This means that every . $02 \mathrm{WH}=1$ pulse.
- Result: For every 1 KWH increment on the counter, the meter will output 50 pulses.

To change the KYZ pulse value:

Step 1:
a. Enter Group Level of

Programming Mode, (see Chp. 8).

Step 2:
a. Press MAX/MIN/LIMITS until 06.P appears in upper display.

Step 3:
a. Press AMPS to change current setting.
\Rightarrow The decimal point next to the 6
b. Press MAX/MIN/LIMITS until 0 . appears in upper display.
c. Press AMPS to activate the Group.
\Rightarrow The lower display indicates multiplication or division factor.
disappears
b. Press MAX/MIN/LIMITS to advance selections. -or-
c. Press VOLTS to reverse. (Until desired factor appears).
\Rightarrow Division is indicated by div appearing in the middle display. When middle display is blank, it indicates multiplication.
d. Press AMPS to store.

9.10: Group 0, Function 7-Number of Phases

NOTE: ENTER 1 FOR SINGLE PHASE/SINGLE WIRE.
ENTER 2 FOR SINGLE PHASE/TWO WIRE.
ENTER 3 FOR THREE PHASE/THREE OR FOUR WIRE.

- *STANDARD FACTORY SET-UP IS THREE-PHASE FOUR-WIRE

Note: Press MAX/MIN/LIMITS at any time to cancel before storing the last digit or switch.

Step 1:
a. Enter Group Level of Programming Mode. (Chapter 8)
b. Press MAX/MIN/LIMITS if 0 . does not appear.
c. Press AMPS to activate the Group.

Step 2:
\Rightarrow 00. appears in upper display.
a. Press MAX/MIN/LIMITS until 07 appears in upper display.
b. Press AMPS to activate the Group.

Step 3:
a. Press VOLTS to select numbers 1,2 or 3.
b. Press AMPS to store.

See Chapter 14 to Exit.

CHAPTER 10

PROGRAMMING GROUP 1 - VOLTAGE, AMP AND WATT SCALE SETTINGS

NOTE: The DMMS 300+, DMMS 350 and DMMS 425 full scales will already be programmed, if the order specified current and voltage transformer ratios. The meter label indicates any full scale setup.

Programming Group 1 contains voltage, amperage and full scale power selection, along with scale factor selection and decimal point placement.

The user can re-scale without removing the DMMS 300+ and DMMS 350 for calibration. The DMMS 300+ and DMMS 350 have been calibrated at standard levels in GROUP 2. Mathematically convert any full scale ratios to those calibrated levels. If a different current or voltage transformer is used, program the primary value of its ratio. If necessary, convert the ratio to a secondary value of five amps standard current (1 amp is a special order) and 120 V or 75 V nominal voltage (option 75 only).

It may be necessary to convert the full scale to a larger unit. There is a resolution limitation for all full scales of 2000. If a display reading exceeds 2000, it may be unstable and subject to zeroing problems.

Example: The full scale for a CT ratio of $3000 / 5$ should be 03.00 kA .

When changing a PT or CT full scale, calculate the new watts full scale and make any necessary changes. The watts full scale will not auto range.

10.1: Group 1, Function 0—Full Scale Voltage Settings, Scale \& Decimal Point Placement

GROUP AND FUNCTION NUMBER	FUNCTION
$\mathbf{1 0 .}$	Full Scale Selection for Volts
$\mathbf{1 1 .}$	Full Scale Selection for Amps
12.	Full Scale Selection for Watts
$\mathbf{1 E .}$	Exit Programming GROUP 1

Table 10-1: Group 1 Programming Format

NOTE: Tables 10-2 and 10-3 contain Full Scale Settings for typical voltages and currents (PT and CT arrangements).

SECONDARY PT VALUES	PT RATIO	FULL SCALE
75 V (Suffix 75) L-N MAX	$120: 1$	9.00 KV
$120 / 208 \mathrm{~V}$	$1: 1$ (Direct)	120.0
$120 / 208 \mathrm{~V}$	$4: 1$	0480 V
$120 / 208 \mathrm{~V}$	$120: 1$	014.4 KV
$277 / 480 \mathrm{~V}($ Suffix G)	$1: 1$ (Direct)	0300 V
$120 / 208 \mathrm{~V}$	$600: 1$	072.0 KV
$120 / 208$	$1150: 1$	138.0 KV

Table 10-2: TYPICAL Full Scale Settings for Volts
If PT is connected line to line, the full scale can be 14.40 KV . Full scale is 300 V L-N, not 277 , because the factory calibration is 300 V . Be sure the table is based on a meter regulation of $2000 \mathrm{~A} / \mathrm{D}$ counts. So, for best accuracy, all settings should be placed within that range.

VOLTAGE FULL SCALE:

To change the Full Scale Settings:
NOTE: Press MAX/MIN/LIMITS at any time to cancel before storing the last digit or switch.

Step 1:

a. Enter Group Level of Programming Mode (see Chp. 8).
b. Press MAX/MIN/LIMITS until 1. appears in upper display.

Step 2:

a. Press AMPS to activate GROUP 1.
\Rightarrow 10. appears in upper display.
\Rightarrow Middle display indicates Scale Factor Setting.
\Rightarrow Lower display indicates Full Scale for voltage.

Entering the Scale Factor:

Step 3:

a. Press AMPS to begin Data Entry Sequence.
\Rightarrow Lower display is replaced with a single dash.
b. Press VOLTS to move the segment UP or DOWN to set Scale Factor.
\Rightarrow UP signifies - Kilovolts
\Rightarrow DOWN signifies - Volts
c. Press AMPS to store.

Step 5:
\Rightarrow Middle display indicates present Full Scale for volts.
\Rightarrow Four dashes appear in lower display.
\Rightarrow Enter the four digit full scale.
a. Press VOLTS to increase the digit number.
b. Press AMPS to store each digit.

Decimal Point Selection:

Step 4:

a. Press VOLTS to move decimal point.
b. Press AMPS to store.

\Rightarrow Repeat this procedure until desired value is entered.
\Rightarrow Lower display indicates new Full Scale Setting.
\Rightarrow Middle display indicates Scale Factor.
\Rightarrow Group and Function Number (including decimal point) appear in upper display.

See Chapter 14 to exit.

10.2: Group 1, Function 1—Amperage Full Scale

CT TYPE	FULL SCALE
Direct Input	05.00 A
$600 / 5$	0600 A
$1000 / 5$	1000 A
$2000 / 5$	2000 A
$3000 / 5$	03.00 KA
$5000 / 5$	05.00 KA

Table 10-3: Full Scale Settings for Amps

Also, note that the meter reads with digital accuracy to a 2000 count range. So, all CT and PT full scale settings in the meter should reflect that limitation. The table above shows the proper settings.

To change the Full Scale Settings:

NOTE: Press MAX/MIN/LIMITS at any time to cancel before storing the last digit or switch.

Step 1:

a. Enter Group Level of Programming Mode (see Chp. 8).
b. Press MAX/MIN/LIMITS until 1. appears in upper display.

Step 2:
a. Press AMPS to activate the Group.
b. Press MAX/MIN/LIMITS until 11. appears in upper display.
\Rightarrow Middle display indicates Scale Factor Setting.
\Rightarrow Lower display indicates Full Scale.

Entering the Scale Factor:
Step 3:
a. Press AMPS to begin Data Entry Sequence.
\Rightarrow Lower display is replaced with a single dash.
b. Press VOLTS to move the segment UP or DOWN to set Scale Factor.
\Rightarrow UP signifies - Kiloamps.
\Rightarrow DOWN signifies - Amps.
c. Press AMPS to store.

Step 5:

\Rightarrow The Full Scale for current is indicated in middle display.
\Rightarrow Four dashes appear in lower display.
\Rightarrow Enter the four digit full scale.
Press VOLTS until the number appears.

Decimal Point Selection:

Step 4:

a. Press VOLTS to move decimal point.
b. Press AMPS to store.

\Rightarrow Repeat this procedure until the value is entered.
\Rightarrow Lower display indicates new Full Scale Setting.
\Rightarrow Middle display indicates Scale Factor.
Group and Function Number appear (including a
decimal point) in upper display.
b. Press AMPS to store.

10.3: Group 1, Function 2-Scale Selection and Decimal Placement for Watts

Programming GROUP 1 also provides decimal positioning for maximum resolution. The following examples assist in selecting the best decimal position for FUNCTION 2.

NOTE: Shift the decimal left to increase resolution. Wattage should not exceed a numeral value of 2500. Shift the decimal one position right to decrease resolution.

Full Scale Wattage (FSW) is the product of FSV and FSA. For FSW for three phases multiply the FSW per phase by 3.

Example 1: Full Scale Voltage (FSV)=120 V
Full Scale Amperage (FSA) $=5.00 \mathrm{~A}$
FSW (one phase) $=120 \mathrm{~V} \times 5.00 \mathrm{~A}$
FSW (one phase)=600 W
FSW (three phase) $=600 \mathrm{~W} \times 3=1,800 \mathrm{~W}$

Here the FSW is too small a value for a Megawatt meter. FSW in the Kilowatt meter equals 1.800 KW . In FUNCTION 2, four 9s appear. Place the decimal point after the first digit. The user cannot change the four digits. The user can only move the decimal point placement.

Example 2: 480/120 PT, 1000/5 CT

FSV $=480 \mathrm{~V}$
FSA $=1000 \mathrm{~A}$
FSW (one phase) $=480 \mathrm{~V} \cdot 1000 \mathrm{~A}$
FSW (one phase)=480,000 W
FSW (three phase)=480,000 W • $3=1,440,000$ W

FSW for a Kilowatt meter equals 1440. KW. FSW for a Megawatt meter equals 1.440 MW. In FUNCTION 2 place the decimal point after the last digit for a Kilowatt meter and after the first digit for a Megawatt meter. It is important to note which type of bezel labeling you have when making this decision.

Example 3: 14.4 KV/120, $1000 / 5$ CT

```
FSV=14.40 KV
```

$F S A=1000 \mathrm{~A}$

FSW (one phase) $=14,400$ Vx1000 A
FSW (one phase) $=14,400,000 \mathrm{~W}$
FSW (three phase)=14,440, $000 \mathrm{Wx3}=43,200,000 \mathrm{~W}$

FSW for a Kilowatt meter equals $43,200 \mathrm{KW}$. Here the FSW is too large a value for a Kilowatt meter (the range is $000-2500$). FSW for a Megawatt meter equals 043.2 MW . In FUNCTION 2, place the decimal after the third digit.

NOTE: In some applications where the load is normally very low, the watts resolution can be increased by moving the decimal point one position left.

To change the scale factor setting for wattage:
NOTE: Press MAXIMIN/LIMITS at any time to cancel before storing the last digit or switch.

Step 1:

a. Enter Group Level of Programming Mode (see Chp. 8).
b. Press MAX/MIN/LIMITS until 1. appears in upper display.

Entering the Scale Factor:
Step 3:
a. Press AMPS to begin Data Entry Sequence.
\Rightarrow Lower display is replaced with a single dash.
b. Press VOLTS to move the segment
\Rightarrow UP signifies - megawatts.
\Rightarrow DOWN signifies - kilowatts..
c. Press AMPS to store.

Step 2:

a. Press AMPS to activate the Group.
b. Press MAX/MIN/LIMITS until 12. appears in upper display.
\Rightarrow Middle display indicates current Scale Factor Setting.
\Rightarrow Lower display indicates 9999 (including current decimal placement).

Decimal Point Selection:

 Step 4:$\Rightarrow \underset{\text { (including current decimal setting) }}{ } \mathbf{\text { Display }}$ blanks and display (including current decimal setting).
a. Press VOLTS to move decimal.
b. Press AMPS to store.

See Chapter 14 to Exit.

CHAPTER 11

PROGRAMMING GROUP 2—METER CALIBRATION

WARNING—READ THIS SECTION CAREFULLY BEFORE PROCEEDING:

- Any rescaling, such as a change in a transformer ratio, can be accomplished in GROUP 1. Calibration is not necessary.
- Meter calibration cannot be performed if the meter is installed for service. The sensing inputs must be connected to a power supply with variable voltage and separate current outputs.
- The calibration procedure requires highly accurate and stable input signals. Incorrect readings result from improper calibration procedures. If unsure, return unit to the factory for calibration.
- BEFORE calibrating any channel, make a note of its Full Scale Setting (see Chapter 10). Set the Full Scale in accordance with Table 10-2 for calibration. Restore original Full Scale Setting when calibration is completed.

11.1: Calibration Requirements

Calibration on the DMMS 300+ and DMMS 350 require precise inputs of 120 Volts, 5 Amps and 2.5 Amps. The DMMS 300+ and DMMS 350 -G model require precise inputs of 300 Volts, 5 Amps and 2.5 Amps. If this equipment is unavailable, contact us for assistance.

GROUP AND FUNCTION NUMBER	FUNCTION
20.	High End Calibration-Volts AN, BN, CN
21.	High End Calibration-Amps A, B, C
22.	Low End Calibration-Amps A, B, C
$2 E$.	Exit Programming Group 2

Table 11-1: Group 2 Programming Format
NOTE: The voltage and current scales are calibrated with the maximum range value 2000 for current, 14.40 for voltage, 300 for option G. The calibration value can be identical to the full scale value in GROUP 1, for better accuracy than the specification. However, if a full scale is ever changed to a higher value than the calibrated value, the value may be less accurate.

VOLTAGE RANGE	INPUT SOURCE	GROUP 2 VALUE
$69.3 / 120 \mathrm{~V}$	75 V	1440
$120 / 208 \mathrm{~V}$	$120 \mathrm{~V}-\mathrm{N}$	1440
$277 / 480 \mathrm{~V}$	300 V	0300
5 A CT High End	5 A	2000
2.5 A Low End	2.5 A	1000

Table 11-2: Calibration Source, Full Scale and Value Settings for Calibration

11.2: Group 2, Functions 0-2-High End Calibration of Voltage Channels, High and Low End Calibration of Amperage Channels

To change the calibration (high end-Functions 0 and 1):
NOTE: Press MAX/MIN/LIMITS at any time to cancel before storing the last digit or switch.

Step 1:

a. Enter Group Level of Programming Mode (see Chp. 8).
b. Press MAX/MIN/LIMITS until 2. appears in upper display.
c. Press AMPS to activate the Group.
\Rightarrow A one-digit password is required to continue.
d. Press VOLTS until 5 appears.
e. Press AMPS to select.

Step 2:

\Rightarrow Refer to Table 11-1 for Function Number that corresponds to the area requiring calibration. Calibration for each area begins with A and then moves to B and C.
a. Press MAX/MIN/LIMITS to change Function number.

Step 3:
a. Press AMPS to activate calibration.
\Rightarrow Digits move to middle display.
\Rightarrow After a moment, digits appear in lower display also.

Step 4:
a. Press POWER to increase the value and PHASE/NEXT to decrease the value.
\Rightarrow Digits in lower display disappear momentarily, then reappear indicating the new value.
b. Press AMPS to store and move to the next phase or Amp within the group.

See Chapter 14 to Exit.

For Amps Low End (Function 2):

NOTE: Press MAX/MIN/LIMITS at any time to cancel before storing the last digit or switch.

Step 1:
a. Enter Group Level of Programming Mode (see Chp. 8).
b. Press MAX/MIN/LIMITS until 2. appears in upper display.
c. Press AMPS to activate the Group.
$\Rightarrow \mathrm{A}$ one digit password is required to continue.
d. Press VOLTS until 5 appears.
e. Press AMPS to select.

Step 2:

a. Press MAX/MIN/LIMITS until 22. appears in upper display.
b. Press AMPS to activate. (Calibration begins with Amps A, then moves to B and C).
\Rightarrow Middle and lower displays blank.

Step 3:
\Rightarrow New value moves to middle display.
\Rightarrow Lower display indicates the calibrated reading after $10-15$ seconds.
\Rightarrow To enter the half scale value in lower display,
a. Press VOLTS to select digits.
b. Press AMPS to store and proceed to B or C within the group.
c. Press MAX/MIN/LIMITS to end calibration procedure.

See Chapter 14 to Exit.

CHAPTER 12

GROUPS 4, 5 AND 6—SET LIMITS AND RELAYS

The DMMS 300+ and DMMS 350 -NL offer a comprehensive limit and set point functionality. The user can program above or below limits for every reading, including \%THD. When a voltage or current measurement exceeds a particular value, the set limit is triggered and alerts the user. Each limit can trigger two internal Form C dry contact relays for alarm or secondary protection.

The DMMS 300+ and DMMS 350 offer two set limit points available for each measured function: LM1 and LM2. Each limit can be set at any desired level. Note: The DMMS425 does not have limit setting capability.

EXAMPLE OF LM1/LM2 SET LIMITS

12.1: Trip Relay

The DMMS 300+ and DMMS 350 -NL have two relays. These relays are linked through the program to Set Limits LM1 and LM2. The user can program above or below set limits for every reading. When a measurement exceeds a particular value, the set limit triggers and alerts the user. Each relay is programmed to a separate delay time (see Chapter 10).

12.2: Time Delays \& Relay Mode

Time Delay indicates whether a delay exists in the relay changing position. Relay Mode indicates whether the relay will act as a protective switch or not.

NOTE: The Time Delay and Relay Mode are both located in GROUP 0, FUNCTIONS 4 \& 5.
THE FOLLOWING GROUPS ALLOW THE USER TO PROGRAM LIMITS AND RELAYS:
GROUP 4: VOLTSIAMPS SET LIMITS / RELAYS
GROUP 4 contains LM1 and LM2 set limit values for voltage and amperage scales. This allows the user to program limits for the four following functions:

1) Volts phase-to-neutral
2) Volts phase-to-phase
3) $A m p s$ A, B, C
4) Amps neutral

Group 4: Programming Format for Limit Condition

GROUP AND FUNCTION NUMBER	FUNCTION
$\mathbf{4 0 .}$	LM1/LM2 Set Limits for Volts AN, BN, CN
$\mathbf{4 1 .}$	LM1/LM2 Set Limits for Volts AB, BC, CA
$\mathbf{4 2 .}$	LM1/LM2 Set Limits for Amps A, B, C
43.	LM1/LM2 Set Limits for Amps Neutral
4E.	Exit Programming GROUP 4

Table 12.1: Group 4 Programming Format
NOTE: These functions have a two-part entry:
Part 1: The first switch sets the limit to trip either above or below the Limit Value.
The second switch sets whether Relay 1 will trip when the condition occurs.
The third switch sets whether Relay 2 will trip when the condition occurs.
Part 2: The second part is the Limit Value.

LM1 LED	LM2 LED	ABOVE/BELOW	RELAY 1	RELAY 2	VALUE
ON	OFF	Digit Up-trigger above value Digit Down-trigger below value	Digit Up-enabled Digit Down- disabled	Digit Up-enabled Digit Down- disabled	$0-9999$
OFF	ON	Digit Up-trigger above value Digit Down-trigger below value	Digit Up-enabled Digit Down- disabled	Digit Up-enabled Digit Down- disabled	$0-9999$

Table 12.2: Group 4: Functions 0-3

LM1 LED	LM2 LED	ABOVE/BELOW	RELAY 1	RELAY 2	VALUE
ON	OFF	Digit Up	Digit Up	Digit Down	0135
OFF	ON	Digit Down	Digit Down	Digit Up	0090

Table 12.3: Group 4: Example for Function 0
EXAMPLE: If voltages exceed $135 \mathrm{~V}, \mathrm{LM} 1$ is triggered and Relay 1 is enabled. If the voltages fall below 90 V, LM2 is triggered and Relay 2 is enabled.

12.4: Group 5, Functions 0-7—LM1/LM2 Set Limits

GROUP 5 contains LM1 and LM2 set limit values for all power functions. This allows the user to program limits for the following functions: Kilowatt, Kilovar, Kilovolt-ampere, Power Factor, Frequency, negative Kilovar, negative Power Factor, and negative Kilowatt.

GROUP AND FUNCTION NUMBER	FUNCTION
$\mathbf{5 0 .}$	LM1/LM2 Set Limits for Kilowatt
$\mathbf{5 1 .}$	LM1/LM2 Set Limits for Kilovar
$\mathbf{5 2 .}$	LM1/LM2 Set Limits for Kilovolt-ampere
53.	LM1/LM2 Set Limits for Power Factor
$\mathbf{5 4 .}$	LM1/LM2 Set Limits for Frequency
55.	LM1/LM2 Set Limits for Negative Kilovar
$\mathbf{5 6 .}$	LM1/LM2 Set Limits Negative Power Factor
$\mathbf{5 7 .}$	LM1/LM2 Set Limits for Negative Kilowatt
$\mathbf{5 E .}$	Exit Programming GROUP 5

Table 12.4: Group 5 Programming Format for Limit Condition

THERE ARE 3 SWITCHES TO SET WITH LIMITS:

1) Switch 1: Sets the limit to trip either above or below the Limit Value.
2) Switch 2: Sets whether Relay 1 will trip when the condition occurs.
3) Switch 3: Sets whether Relay 2 will trip when the condition occurs.

After the switches are set, the limit value should be programmed (see table in section 12.4).

LM1 LED	LM2 LED	SWITCH 1 ABOVE/BELOW	SWITCH 2 RELAY 1	SWITCH 3 RELAY 2	VALUE
ON	OFF	Digit Up-trigger above value Digit Down-trigger below value	Digit Up-enabled Digit Down- disabled	Digit Up-enabled Digit Down- disabled	0-9999 $0-9999$
OFF	ON	Digit Up-trigger above value Digit Down-trigger below value	Digit Up-enabled Digit Down- disabled	Digit Up-enabled Digit Down- disabled	$0-9999$ $0-9999$

Table 12.5: Group 5: Functions 0-7

LM1	LM2	SWITCH 1	SWITCH 2	SWITCH 3	VALUE
ON	OFF	Digit Up	Digit Up	Digit Down	0120
OFF	ON	Digit Down	Digit Down	Digit Up	0090

Table 12.6: Group 5: Example for Function 0
Thus, if Kilowatts exceed 120 W, LM1 is triggered and Relay 1 is tripped. If the Kilowatts fall below 90 W , LM2 is triggered and Relay 2 is tripped.

SPECIAL CASES

FREQUENCY: FUNCTION 4 contains a permanent decimal after the second digit. The highest and lowest level limits that can be programmed are 99.99 and 00.00 , respectively.

POWER FACTOR: FUNCTIONS 3 and 6 contain a permanent decimal after the first digit. The highest and lowest limits that can be programmed are $\mathbf{1 . 0 0 0}$ and $\mathbf{0 . 0 0 0}$, respectively.

GROUP 6: THD SET LIMITS / RELAYS (For Option -H)
GROUP 6 contains LM1 and LM2 set limits for THD. These allows the user to program limits for the following functions: THD Volts AN, BN, CN, Amps A, Amps B, and Amps C.

GROUP AND FUNCTION NUMBER	FUNCTION
60.	THD Volts AN
61.	THD Volts BN
62.	THD Volts CN
63.	THD Amps A
64.	THD Amps B
65.	THD Amps C
$6 E$.	Exit Programming GROUP 6

Table 12.7: Group 6 Programming Format For THD Limit Conditions

$\begin{aligned} & \text { LM1 } \\ & \text { LED } \end{aligned}$	$\begin{aligned} & \text { LM2 } \\ & \text { LED } \end{aligned}$	SWITCH 1 ABOVE/BELOW	SWITCH 2 RELAY 1	SWITCH 3 RELAY 2	VALUE
ON	OFF	Digit Up-trigger above level Digit Down-trigger below level	Digit Up-enabled Digit Downdisabled	Digit Up-enabled Digit Downdisabled	$\begin{aligned} & \hline 0-999.9 \\ & 0-999.9 \end{aligned}$
OFF	ON	Digit Up-trigger above level Digit Down-trigger below level	Digit Up-enabled Digit Downdisabled	Digit Up-enabled Digit Downdisabled	$\begin{aligned} & \hline 0-999.9 \\ & 0-999.9 \end{aligned}$

Table 12.8: Group 6 Functions 0-5

12.5: Group 6, Functions 0-5-LM1/LM2 Set Limits and Relay Triggers for Over/Under \%THD Conditions

LM1 LED	LM2 LED	SWITCH 1 ABOVE/BELOW	SWITCH 2 RELAY 1	SWITCH 3 RELAY 2	LEVEL
ON	OFF	Digit Up	Digit Up	Digit Down	012.0
OFF	ON	Digit Down	Digit Down	Digit Up	009.0

Table 12.9: Group 6—Example for Function 0

So, if THD exceeds 12%, LM1 is triggered and Relay 1 is enabled.
If THD falls below 9\%, LM2 is triggered and Relay 2 is enabled.

12.6: Limits or Relays Programming Procedure

NOTE: The procedure for programming any limit or relay for each group is identical. The example below signifies the exact procedure for programming a Limit/Relay for GROUPS 4-6.
-Group 4 is used as an example.
NOTE: Press MAX/MIN/LIMITS at any time to cancel before storing the last digit or switch.

Step 1:
a. Enter Group Level of Programming Mode (see Chp. 8).
b. Press MAX/MIN/LIMITS until 4. appears in upper display.
c. Press AMPS to activate the Group.

Step 2:
a. Press MAX/MIN/LIMITS to select desired Function.
\Rightarrow Middle display provides the currently selected value for whether to trip above or below, activate Relay 1 and activate Relay 2.

Left Switch: UP position indicates above tripping value for lower display's value. DOWN position indicates below tripping.
Middle Switch: UP position sets Relay 1 to trip.
DOWN position doesn't activate Relay 1 when limit condition exists.
Right Switch: Same as Middle Switch, regarding Relay 2.
b. Press VOLTS to toggle between LM1 and LM2 settings.
\Rightarrow The LM1 or LM2 annunciator indicates the limit being displayed.

Step 3:
a. Press AMPS once.
\Rightarrow Lower display is replaced with three dashes.
\Rightarrow Follow this step for DISABLING LIMITS:

Step 4:
a. Press AMPS once to Disable the Limit.
\Rightarrow The display blanks momentarily, then the disabled settings appears in middle and lower displays.
\Rightarrow The Set Above/Below will be set to below.
\Rightarrow Trip Relay 1 will be disabled.
\Rightarrow Trip Relay 2 will be disabled.
\Rightarrow The Setup Level will be set to 0000 .

Step 5:
a. Press VOLTS to change current Set Above/Below, Trip Relay 1, and Trip Relay 2 settings.
\Rightarrow This toggles the segments UP (above limit) or DOWN (below limit).
b. Press AMPS to store.
c. Press VOLTS to toggle the second segment UP (enable Relay 1) or DOWN (disable Relay 1).
d. Press AMPS to store.
e. Press MAX/MIN/LIMITS to proceed to entering the limit value.
f. Press AMPS to store.

Step 6:
a. Press VOLTS to scroll through digits.
b. Press AMPS to select.
c. At the last digit, press AMPS twice to store limit programming.
\Rightarrow Wait 3 seconds and the display updates with the new programming value.

Step 7:

a. Press VOLTS to program the other limits and repeat this procedure.
b. Press MAX/MIN/LIMITS TO PROGRAM ANOTHER Function (refer to Step 2).

See Chapter 14 to Exit.

CHAPTER 13

PHASE REVERSAL AND PHASE IMBALANCE SET LIMITSIRELAYS

13.1: Phase Reversal and Phase Imbalance

The set limit alerts the user of an unbalanced or a reversed phase in a Three-phase System. The DMMS $300+$ and DMMS 350 have two options for this purpose. The standard set-up is clockwise ABC rotation. Counterclockwise CBA rotation can be selected in GROUP 03.1, Switch C UP.

PHASE REVERSAL: Activates when a reversed phase enters the DMMS 300+ and DMMS 350's metering system.

PERCENT PHASE IMBALANCE: Activates when the user's preset value percent phase imbalance is exceeded. For example: an unbalanced Three-phase System. Note: The DMMS425 does not have this capability.

FIGURE 13-1: EXAMPLE OF SET LIMITS

13.2: Trip Relay

NOTE: All information pertaining to Trip Relays 1 and 2 applies only to a meter with the -NL option.
The unit has two relays linked through the program to LM1 and LM2 Set Limits. The relay outputs can be programmed individually to close when LM1 and/or LM2 is triggered. Each relay has provisions for a separate delay (see Chapter 12).

(1)TRIP RELAY 1	Whether to trip Relay 1.
(2)TRIP RELAY 2	Whether to trip Relay 2.
(3)LEVEL The level at which the warning mechanism trips percentage of voltage imbalance. (4)ENABLEIDISABLE In the event of Phase Reversal, whether to enable or disable Phase Reversal Detection.	

GROUP AND FUNCTION NUMBER	FUNCTION
70.	Voltage Phase Reversal Detection
71.	Voltage Phase Imbalance
$7 E$.	Exit Programming GROUP 7

Table 13.1: Group 7 Programming Format

To change the phase reversal setting:

Step 1:
a. Enter Group Level of Programming Mode (see Chp. 8).
b. Press MAX/MIN/LIMITS until 7. appears in upper display.
c. Press AMPS to activate the Group.

Step 2:
a. Press AMPS once.
\Rightarrow Lower display is replaced with two dashes.
b. Press VOLTS to toggle the first segment UP (enable Relay 1) or DOWN (disable Relay 1).
c. Press AMPS to select. (Repeat procedure for second segment-Relay 2).

\Rightarrow 70. appears in upper display.
\Rightarrow Middle display indicates current settings for Trip Relay 1 and Trip Relay 2.
\Rightarrow Lower display indicates current setting for Enable/Disable Phase Reversal Detection.

Step 3:
\Rightarrow Middle display is replaced with current Phase Reversal Setting.
\Rightarrow Lower display is replaced with a single dash.
a. Press VOLTS to toggle the segment UP (enable Phase Reversal Detection) or DOWN (disable detection).
b. Press AMPS to store.

\Rightarrow Middle and Lower display indicate FUNCTION 0 settings.

See Chapter 14 to exit.

13.4: Group 7, Function 1—Percentage Voltage Phase Imbalance

To change the percentage voltage phase imbalance:
NOTE: Press MAX/MIN/LIMITS at any time to cancel before storing the last digit or switch.

Step 1:
a. Enter Group Level of Programming Mode (see Chp. 9).
b. Press MAX/MIN/LIMITS until 7. appears in upper display.
c. Press AMPS to activate the Group.

Step 2:
a. Press MAX/MIN/LIMITS until 71. appears in upper display.
\Rightarrow Middle display indicates the Trip Relay 1 and Trip Relay 2 settings.
\Rightarrow Lower display indicates the percentage of Voltage Phase Imbalance.

Step 3:

a. Press AMPS to begin Data Entry Sequence.
\Rightarrow Lower display is replaced with two dashes.
b. Press VOLTS to toggle the first segment UP (enable Relay 1) or DOWN (disable Relay 1).
c. Press AMPS to store.

\Rightarrow Middle and lower displays indicate new settings.

Step 4:
\Rightarrow Middle display indicates the current percentage of Voltage Phase Imbalance.
\Rightarrow Four dashes appear in lower display.
a. Press VOLTS to scroll through digits.
b. Press AMPS to select desired digit.

CHAPTER 14

EXITING PROGRAMMING MODE

NOTE: Steps to exit Programming Mode vary depending on the programming stage.
Exiting the Programming Mode is always necessary to store any new changes and to calculate a new checksum. Failure to exit results in a checksum error: the display blanks and the max LED flashes.

If you are located in a FUNCTION Level-begin at Step 1.
If you are located in a GROUP Level-begin at Step 2.

Step 1:
Exiting from Function Level
a. Press MAX/MIN/LIMITS until the Group number in upper display is followed by E (for Exit).
\Rightarrow The meter returns to Function Level.

Step 2:
Exiting from Group Level
a. Press MAX/MIN/LIMITS until E. appears in upper display (for Exit).
b. Press AMPS to exit entirely from Programming Mode.

Step 1a.:
a. Press AMPS to exit from Function Level to Group Level.

CHAPTER 15

PROGRAMMING QUICK REFERENCE

15.1: Entering the Programming Mode

1. Hold PHASE/NEXT key and press AMPS key.
2. Display blanks and shows either a ' 0 ', ' 1 ', or ' 3 '.
3. If ' 3 ' is not displayed then press AMPS key until ' 3 ' is displayed.
4. Release AMPS key and press PHASE/NEXT key, while ' 3 ' is still displayed.
5. Display shows ' 333 ' momentarily.
6. Upper display starts counting. Press PHASE/NEXT key when ' 5 ' is displayed to register the ' 5 '.
7. Repeat step 6 until ' 555 ’ has been registered.

15.2: Data Entry Sequence

1. At programmable numerical fields or Switch Pack fields, Press AMPS key to begin Data Entry Sequence.
2. The current setting moves to middle row of display and dashes appear in the bottom row. Press VOLTS key to toggle between available choices.
3. When a correct choice is selected, press AMPS key to store.

15.3: Programming Groups

Programming Groups	
$\mathbf{0}$	Global Meter Setup—Integration Interval, Meter Address, Communication Setting, Relay Settings
$\mathbf{1}$	Full Scale Settings. Voltage Full Scale, Current Full Scale and Power Function Full Scale.
$\mathbf{2}$	Meter Calibration
$\mathbf{3}$	Calibration Ratios
$\mathbf{4}$	Volts and Current Limits
$\mathbf{5}$	Power Function Limits
$\mathbf{6}$	THD Limits
$\mathbf{7}$	Imbalance Reversal Limits
$\mathbf{8}$	DC Output Calibration

15.4: Group 0-Global Meter Setup

0. Interval.
1. Meter Address for Communication.
2. Baud Rate for Communication.
3. System Configuration Switch Packs.
4. Reserved Switches.
5.

A. Blank Non Significant Leading Zeros
B. Reset Protection
C. Phase Reversal Rotation Selection
D. Open Delta Configuration
032.
A. Instantaneous/Average Limit
B. Power Factor Polarity
C. Modbus Options
D. Protocol Selection
033.
A. Computer Control Relay 1
B. Computer Control Relay 2
C. Communication Selection
D. DC-Output/Print Control
04. Relay 1 Programming

04P.
A. Imb/Rev Selection
B. And/or Logic

C \& D. Relay Control Selection
040. ON to OFF delay time
041. OFF to ON delay time
05. Relay 2 Programming 05P.
A. Imb/Rev Selection
B. Reserved
C. \& D. Relay Mode Selection
050. ON to OFF delay time
051. OFF to ON delay time
06. KYZ Programming

06P. Pulse Factor Programming
060. KYZ Port 0 Function Mapping
061. KYZ Port 1 Function Mapping
062. KYZ Port 2 Function Mapping
07. Number of Phases

15.5: Group 1: Full Scale Setup

10. Volts Full Scale
11. Currents Full Scale
12. Power Full Scale

15.6: Group 2: Calibration

20. Volt AN, BN, CN
21. Amp A, B, C (High End)
22. Amp A, B, C (Low End)

15.7: Group 3: Calibration Ratios

30. Volt AN
31. Volt BN
32. Volt CN
33. Amp A (High-End Ratios)
34. Amp B (High-End Ratios)
35. Amp C (High-End Ratios)
36. Amp A (Low-End Ratios)
37. Amp B (Low-End Ratios)
38. Amp C (Low-End Ratios)

15.8: Group 4: Volt/Current Limits

40. Volt AN, Volt BN, and Volt CN Limits.
41. Volt $A B$, Volt $B C$, and Volt CA Limits.
42. Amp A, Amp B, and Amp C Limits.
43. Amp N Limits.
44. +Watt Limits
45. +VAR Limits
46. VA Limits
47. +PF Limits
48. Frequency Limits
49. -VAR Limits
50. -PF Limits
51. -Watt Limits

15.10: Group 6: THD Limits

60. Volt AN THD Limits
61. Volt BN THD Limits
62. Volt CN THD Limits
63. Amp A THD Limits
64. Amp B THD Limits
65. Amp C THD Limits

15.11: Group 7: Imbalance/Reversal Limits

70. Detect Reversal
71. Imbalance percent Limit

15.12: Group 8: DC Output Calibration

8P. Switch Packs
8P0.
A. 75 Volts Suffix Selection
B. 300 Volts Suffix Selection
C. Frequency
D. 10 Channel Selection

8P1. Power Uni-/Bidirectional Selection
A. Port 0
B. Port 1
C. Port 2
D. Port 3

8P2. Power Uni- /Bidirectional Selection
A. Port 4
B. Port 5
C. Port 6
D. Port 7

8P3. Power Uni- /Bidirectional Selection
A. Port 8
B. Port 9
C. Reserved
D. Reserved
80. DC Output Port 0

80F. Parameter Mapping
80L. Low-End Calibration
80H. High-End Calibration
81. DC Output Port 1

81F. Parameter Mapping
81L. Low-End Calibration
81H. High-End Calibration
89. DC Output Port 9

89F. Parameter Mapping
89L. Low-End Calibration 89H. High-End Calibration

KEY DESIGNATIONS	
MAXIMIN/LIMITS	- Scroll Groups
	- Scroll Functions
vOLTS	
AMPS	- Scroll Packs

CHAPTER 16

ETHERNET OPTION

The DMMS350 Meter with the Ethernet Option has all the components of the standard Meter PLUS the capability of connecting to multiple devices over Ethernet. The Meter face is the same as the DMMS300+.

16.1: Ethernet Module

The Ethernet connection is made with a small module added to the back of the meter. This small but powerful module has simply an RJ-45 Port and four Status LEDs.

LED DETAIL

See the Table below for a description of the Status LED functions.

LED	Description	LED Functions
1	Serial Port (Channel) 1 Status for Software Version 01.8	Lights solid green to indicate Channel 1 is IDLE. Blinks green to indicate Channel 1 is connected to the network and ACTIVE.
1	Serial Port (Channel) 1 Status for Software Version 01.2	Blinks green to indicate Channel 1 is IDLE. Lights solid green to indicate Channel 1 is connected to the network and ACTIVE.
2	Serial Port (Channel) 1 Status for Software Version 01.2	Blinks yellow to indicate Channel 1 has communication activities.
2	Serial Port (Channel) 2 Status for Software Version 01.8	Lights solid yellow to indicate Channel 2 is IDLE. Blinks yellow to indicate Channel 2 is connected to the network and ACTIVE. (Not used by this device; reserved for future use)
3	Diagnostics	Blinks or lights solid red in combination with the green (Channel 1) LED to indicate DIAGNOSTICS and ERROR DETECTION. Red solid, green (Channel 1) blinking: 1x: EPROM checksum error 2x: RAM error 3x: Network controller error 4x: EEPROM checksum error 5x: Duplicated IP address on network* 6x: Software does not match hardware* Red blinking, green (Channel 1) blinking: 4x: Faulty network connection* 5x: No DCHP response received*
4	Network Link Status	Lights solid green to indicate network port is connected to the network.
		* non-fatal error

16.2: Ethernet Option Setup

This chapter covers the required steps to get the Ethernet Interface on-line and working. There is only one method used to log into the Ethernet Server and set up the IP address:

- Network Port Login: make a Telnet connection to the network port (9999).

It is important to consider the following points before logging into and configuring the Ethernet Interface:

- The Ethernet Interface's IP address must be configured before a network connection is available.
- Only one person at a time may be logged into the network port. This eliminates the possibility of several people trying to configure the Ethernet Interface simultaneously.

16.3: Default IP Address

The Ethernet Interface ships with a default IP address set to 0.0 .0 .0 , whish automatically enables DHCP within the Ethernet Interface.

Provided a DHCP server exists on the network, it will supply the Ethernet Interface with an IP address, gateway address and subnet mask when the Ethernet Interface boots up. If not DHCP server exists, the Ethernet Interface will respond with a diagnostic error: the RED Diagnostic LED blinks continuously and the GREEN Status LED blinks five times.

16.4: AutolP

AutoIP allows an Ethernet Interface to obtain an address in a network that does not have a DHCP server. (Windows 98 and 2000 also support AutolP.)

AutoIP assigns a random valid address to the Ethernet Interface in the range of 169.254.x. 1 to 169.254.x. 1 (x can be between 0 and 255). This range of IP addresses is not to be used over the Internet. If the Ethernet Interface has not been configured manually and cannot find a DHCP server, it automatically chooses an address from the reserved range. The Ethernet Interface then uses the Address Resolution Protocol (ARP) to send out a request asking if any node is using that address. If another node is using the same address, the Ethernet Interface assigns another IP address, reboots and repeats the sequence.

NOTE: AutoIP-enabled Ethernet Interfaces are constantly looking for DHCP servers. If a DHCP server becomes available on the network, the AutoIP-enabled Ethernet Interface switches to the DHCP serverprovided address and the unit reboots. If the DHCP server exists but denies the Ethernet Interface an IP address, the Ethernet Interface does not attach to the network, but waits and retries.

AutoIP allows a small network of AutoIP-enabled devices to be set up without any need for a DHCP server or static IP addresses.

AutoIP can be disabled be setting the IP address to 0.0.1.0. The 1 in the third octet is the disabling factor.

16.5: Setting the IP Address

The Ethernet Interface's IP address must be configured before a network connection is available. If the IP address was not set automatically via DHCP, set it now using a network and the setup (configuration) menu.

NETWORK PORT LOGIN

The ARP method is available under UNIX and Windows-based systems. The Ethernet Interface will set its address from the first directed TCP/IP packet it receives.

CLEARING THE ARP TABLE

Clearing and entry in the ARP table should be performed before and after setting the IP Address that you will be using. In command prompt, type the following (insert your IP Address). Then press the Enter key.
$\operatorname{arp}-\mathrm{d}$ 191.12.3.77

ARP ON UNIX

On a Unix host, create an entry in the host's ARP table using the intended IP address and the hardware address of the Ethernet Interface, which is found on the product label.

$$
\operatorname{arp}-s \text { 191.12.3.77 00:20:4a:xx:xx:xx }
$$

ARP ON WINDOWS

In order for the ARP command to work on Windows, the RP table on the PC must have at least one IP address defined other than its own. If the ARP table is empty, the command will return an error message. Type ARP -A at the DOS command prompt to verify that there is at least one entry in the ARP table.

If the local machine is the only entry, ping another IP address on your network to build a new entry in the ARP table; the IP address must be a host other than the machine on which you are working. Once there is at least one additional entry in the ARP table, use the following command to ARP the IP address to the Ethernet Interface:

$$
\operatorname{arp}-s \text { 191.12.3.77 00-20-4a-xx-xx-xx }
$$

TELNET TO PORT 1

Now open a Telnet connection to Port 1. The connection will fail quickly (3 seconds). But the Ethernet Interface will temporarily change its IP address to the one designated in this step.

$$
\text { telnet 191.12.3.77 } 1
$$

TELNET TO PORT 9999

Finally, open a Telnet connection to port 9999 and set all required parameters.
telnet 191.12.3.77 9999

CLEARING THE ARP TABLE

Clearing and entry in the ARP table should be performed before and after setting the IP Address that you will be using. In command prompt, type the following (insert your IP Address). Then press the Enter key.
$\operatorname{arp}-\mathrm{d} 191.12 .3 .77$
NOTE: This IP address is temporary and will revert to the default value when the Ethernet Interface's power is reset, unless you log into the Ethernet Interface and store the changes permanently.

16.6: Network Configuration

Certain parameters must be configured before the Ethernet Interface can function on a network. The Ethernet Interface can be locally or remotely configured using the following procedures:

Use a Telnet connection to configure the unit over the network. The Ethernet Interface's configuration is stored in nonvolatile memory (NVRam) and is retained without power. The configuration can be changed at any time. The Ethernet Interface performs a reset after the configuration has been changed and stored.

As mentioned above, to configure the Ethernet Interface over the network, establish a Telnet connection to port 9999. From the Windows Start menu, click Run and type the following command, where x.x.x.x is the IP address and 9999 is the Ethernet Interface's fixed network configuration port number.
telnet x.x.x.x 9999
NOTE: Be sure to include a space between the IP address and 9999.

16.7: Configuration Parameters

After entering Setup Mode (confirm by pressing Enter), you can configure the parameters for the software in use by entering one of the numbers on the Change Setup Menu, or you can confirm default values by pressing Enter. Be sure to store new configurations when you are finished. The Ethernet Interface will then perform a power reset. NOTE: Check your Software Version (see below).

Serial Number 5415404 MAC Address 00:20:4A:54:3C:2C
Software Version V01.2 (000719)
Press Enter to go into Setup Mode

1) Network/IP Settings:

Ethernet Interface Autodetect

IP Address
Default Gateway
Netmask
2) Serial \& Mode Settings:

Protocol Modbus/RTU, Slave(s) attached (FIXED)
Serial Interface $\quad 9600,8, N, 1, R S 232$, DB25 (must match meter) (FIXED)
3) Modem Control Settings:

DCD Output
CTS Output

- 0.0.0.0/DHCP (Customer Configurable)
--- not set --- (Customer Configurable)
--- not set --- (Customer Configurable)

Fixed High/Active
Fixed High/Active
4) Advanced Modbus Protocol Settings:

Slave Addr/Unit ID Source Modbus/TCP header (FIXED)
Modbus Serial Broadcasts Disabled
Character, Message Time-out 00010 ms, 00500 ms

Serial Number 7262203 MAC Address 00:20:4A:72:F2:FB
Software Version V01.8b3 (031021)
Press Enter to go into Setup Mode
Model: Device Server OEM (Firmware Code: 4D)

1) Network/IP Settings:

Ethernet Interface Autodetect
IP Address
Default Gateway
Netmask
2) Serial \& Mode Settings:

Protocol Modbus/RTU, Slave(s) attached (FIXED)
Serial Interface
9600,8,N,1,RS232 (FIXED)
3) Modem Control Settings:

DCD Output Fixed High/Active
CTS Output Fixed High/Active
4) Advanced Modbus Protocol Settings:

Slave Addr/Unit Id Source Modbus/TCP header (FIXED)

Modbus Serial Broadcasts	Disabled (ID=0 Auto-mapped to 1)
MB/TCP Exception Codes	Yes (return 0x0A and 0x0B)
Character, Message Time-out	$00050 \mathrm{~ms}, 05000 \mathrm{~ms}$

D) default settings, S) save, Q) quit without save;
select command or parameter set (1..4) to change:
NOTE: EIG recommends that you use the default settings shown in the above setup screens.

BAUD RATE

The Ethernet Interface and attached serial device (the meter) must agree on a speed or baud rate used for the serial connection. Valid baud rates are 1200, 2400, 4800 and 9600 (default). For the DMMS350, default settings are $\mathbf{9 6 0 0}$ baud rate, 8 data, 1 stop, no parity, Modbus RTU.

16.8: New Parameters for Version V01.8

NOTE: Some of the advanced parameter settings are only displayed in the top menu screen if they are enabled.

Use MB/TCP 0x0B/0x0A Exception Responses Option

Exception hex OB (TARGET DEVICE FAILED TO RESPOND) should be considered a "soft" error where a retry may succeed. It is returned: If slave-attached - if the slave didn't answer or the answer contained a CRC error.

Disable Modbus/TCP Pipeline Option

While the Modbus/TCP standard specification requires Modbus/TCP masters/clients to issue only one poll at a time, the full-duplex flow-controlled nature of TCP/IP allows them to issue more than one at a time and the TCP socket will happily buffer them. This network device will process them one at a time and answer each in turn.

Setting this parameter to $\mathbf{1 / N o}$ causes the network device to allow this queuing or pipeline behavior. This is the safest default setting; only change this to DISABLE if you are having problems.

Setting this parameter to $2 /$ Yes causes the network device to always process the newest request from the TCP buffer - all older requests are discarded. This allows a Modbus/TCP master/client to retry old requests without risking building up a stale queue of waiting requests.

Tx Delay after RX Option

This will insert a delay between the last Modbus serial response and the next Modbus serial command. This is used for slower Modbus slave devices that may not be immediately ready to receive a new command after a response.

TeInet Configuration Password Option

The Telnet Configuration Password can be set to disable unauthorized access to the setup menu via a Telnet connection to port 9999. (See Section 16.7, Network IP Settings.)

ADDENDUM A-1
DMMS B MECHANICAL INSTALLATION

These diagrams display the DMMS B Unit mechanical installation.

Diagram A-1.1 Face of the DMMS 300B with lower cover removed.

NOTE: Mounting of the DMMS B Unit is very easy, because it requires no cutting. The meter is mounted with five screws and all wiring can be done through the front panel just below the face of the meter. Wiring can also be done through the back of the meter, if desired. The wiring will be described below.

NOTE: Dimensions of the meter are: 8.375 "W x 7.125 " $\mathrm{H} \times 4.25$ "D.

Diagram A-1.2 Mounting Detail for DMMS B.

NOTE: Mounting of the DMMS B Unit is very easy, because it requires no cutting. The meter is mounted with five screws as shown and all wiring can be done through a front panel just below the face of the meter. All dimensions in the diagram above are in inches.

ADDENDUM A-2

DMMS B UNIT ELECTRICAL INSTALLATION

A-2.1: Connecting the Current Circuit

Install the cable current at 600 V AC minimum. The cable connector should be rated at 6 Amps or greater and have a cross-sectional area of 16 AWG.

Mount the current transformers as close as possible to the meter. The following table illustrates the maximum recommended distances for various CT sizes, assuming the connection is via 16 AWG cable.

CT Size (VA)	Maximum Distance (CT to 300B)
2.5 VA	10 FEET
5.0 VA	15 FEET
7.5 VA	30 FEET
10.0 VA	40 FEET
15.0 VA	60 FEET
30.0 VA	120 FEET

WARNING: DO NOT LEAVE SECONDARY OF CT when primary Current is flowing. This may cause high voltage which overheats the secondary of the CT. If the CT is not connected, provide a shorting block on the secondary of THE CT.

A-2.2: CT Connection

If the DMMS B Unit is connected directly, maintain the exact connection to avoid incorrect polarity.
When the DMMS B Unit is connected using the CTs, it is imperative to maintain the correct CT polarities. CT polarities are dependent upon correct connections of CT leads and the direction that the CTs are facing when they are clamped around the conductors. The dot on the CT must face the line side and the corresponding secondary connection must connect to the appropriate pin. Failure to connect CTs properly results in incorrect Watt readings.

A-2.3: Connecting the Voltage Circuit

For proper meter operation, the voltage connection must be maintained. The voltage must correspond to the correct terminal.

The cable required to terminate the voltage sense circuit should have an insulation rating greater than 600 V AC and a current rating greater than 0.1 A .

A-2.4: Selecting the Voltage Fuses

We recommend using fuses, although connection diagrams do not show them. Slow blow, 200 mA rated fuses should be used.

WARNING: THE MAXIMUM VOLTAGE FOR the DMMS 300 B is 150 V PHASE TO NEUTRAL. IF SUFFIX -G IS AdDED, THE MAXIMUM VOLTAGE IS 300 V PHASE TO NEUTRAL.

A-2.5: Connection to the Main Power Supply

The DMMS B requires a separate power supply. Listed are the 5 different power supply options and corresponding suffixes.

CONTROL POWER	OPTION
120 V AC	No SuFFIX
240 V AC	A
24 V DC	D
48 V DC	D^{1}
125 V DC	D^{2}

NOTE: FOR DC-powered units, polarity must be observed. Connect the negative terminal to L1 and positive TERMINAL TO L2. AN EARTH GROUND CONNECTION TO CHASSIS IS MANDATORY FOR NORMAL OPERATION (TERMINAL 3). DO NOT ground the unit through the negative of the DC supply. Separate grounding is required.

A-2.6: Electrical Connection Installation

Choose the diagram that best suits your application and maintain the polarity. Follow the outlined procedure to verify correct connection.

NOTE: This Procedure is only suitable when power flow is single direction.

HELPFUL DEBUGGING TOOLS

Isolating a CT Connection Reversal

(1.) $\quad \Rightarrow \quad$ Remove potential connections to terminals 6 and 7. Observe the KW reading. It should be positive (unless you are generating power).
$\Rightarrow \quad$ If negative, reverse the CT wires on terminals 8 and 9 .
(2.) Connect terminal number 6 potential. If KW decreases to about zero, reverse CT wires on terminals 10,11 .
(3.) Connect terminal number 7 potential. If KW is low, reverse CT wires to terminals 12 and 13 .

LISTING OF CONNECTION DIAGRAMS

I Three-Phase, Three-Wire System Delta with Direct Voltage and CTs.
II Three-Phase, Three-Wire Open Delta with two CTs and two PTs. (Open Delta System should only be used if the electrical system is a 3-wire OPEN DELTA. Open Delta can be enabled or disabled in Programming Group 0, Function 3).

III Three-Phase, Three-Wire Open Delta with three CTs and two PTs.
IV Three-Phase, Four-Wire System Wye with Direct Voltage and CTs.

V Three-Phase, Four-Wire System Wye with CTs and PTs.

VI Three-Phase, Four-Wire System Wye 2.5 Element with CTs and PTs.
NOTE: For Three-Phase, Grounded Delta, use the Delta connection.

I. Three Phase, Three-Wire System Delta with Direct Voltage and CTs.

II. Three-Phase, Three-Wire Open Delta with two CTs and two PTs. Special Programming Required.

III. Three-Phase, Three-Wire Open Delta with three CTs and two PTs. Special Programming required.

IV. Three-Phase, Four-Wire System Wye with Direct Voltage and CTs.

V. Three-Phase, Four-Wire System Wye with CTs and PTs.

VI. Three-Phase, Four-Wire System Wye 2.5 Element with CTs and PTs.

A-2.7: Control Relays \& Pulse Output: NL Option

The DMMS 300+ and 350 Units can be equipped with 2 Control Relays and 1 KYZ Pulse Output by ordering the NL Option.

KYZ RELAYS: A single relay provides pulses for energy management systems or any other type of recording device. These pulses represent accumulated positive watt-hour, or negative watt-hour. Accomplish this assignment through Programming Mode. The pulse value is determined by the decimal increment of the power function assigned to the pulse. KYZ relay output (Form C), rated 200V, 100mA-1 each.

NOTE: Unless otherwise specified, standard KYZ set up represents positive watt hour. See table below for standard rate. The scale factor for wattage (KW or MW) and Full Scale Decimal Point Placement is selectable in Programming Mode GROUP 1, FUNCTION 2. Follow the Decimal Point Placement corresponding to the change in level. A multiplication or division factor can be programmed. See Programming GROUP 0, FUNCTION 6 for a different rate.

STANDARD RATE TABLE FOR WATTS*

DECIMAL POINT PLACEMENT (KW/MW)	CHANGE IN LEVEL
9999.	1 Units W-Hour
999.9	0.1 Units W-Hour
99.99	0.01 Units W-Hour
9.999	0.001 Units W-Hour

* Units can be Kilowatts or Megawatts.

A-2.8: KYZ Pulse Outputs: NL2 Option

The -NL2 Option for the DMMS is equipped with three KYZ outputs. The KYZ relays provide pulses for energy management systems or any other type of recording device. These pulses represent accumulated positive watt-hour, negative watt-hour, VA-hour, positive VAR-hour, or negative VAR-hour. Accomplish this through Programming Mode GROUP 0, FUNCTION 6. The pulse value is dependent upon the Decimal Point Placement and is determined by the decimal increment of the power function assigned to the pulse. Refer to the situation that applies to the meter setting.

Note: Unless otherwise specified, standard KYZ setup for Pulse Output 0 is positive Watt Hour, Pulse Output 1 is negative Watt-Hour, and Pulse Output 2 is VA-hour. See table below for standard rate.

Note: With Option R the setup for Pulse Output 0 is positive Watt-Hour, Pulse output 1 is positive VAR-hour, and Pulse output 2 is negative VAR-hour.

The scale factor for Wattage (KW or MW) and Full Scale Decimal Point Placement is selectable in Programming Mode GROUP 1, FUNCTION 2. Follow the Decimal Point Placement corresponding to the Change in Level. A multiplication or division factor can be programmed. See Programming GROUP 0, FUNCTION 6 for a different rate.

KYZ Relay Output (Form C), rated 200V, 100mA. Three separate KYZ Outputs are labeled 0 through 2.
See Figure 3.1 below for detail.

STANDARD RATE TABLE FOR WATTS*

DECIMAL POINT PLACEMENT (KW/MW)	CHANGE IN LEVEL
9999.	1 Units W-Hour
999.9	0.1 Units W-Hour
99.99	0.01 Units W-Hour
9.999	0.001 Units W-Hour

- Units can be Kilowatts or Megawatts.

Figure A-2.1: KYZ Relay Connection for NL2 Option

ADDENDUM A-3

DMMS B UNIT COMMUNICATION INSTALLATION

Figure A-3.1: Wiring Diagram of DMMS 300B
RS485 Communication and Relay Output Installation.

A-3.1: RS485

Each DMMS B instrument has an unique address up to four digits. Available standard baud rates are available up to 9600 baud. To select the proper baud rate, apply the following rules:

For a smaller number of instruments over a long distance, use a lower baud rate. Optimal recommended baud rate is 1200 baud.

RS485 parallels multiple instruments on the same link. Its operating capability is up to 4000 feet. When using only 2 wires (on the RS485), the link can include up to 30 instruments.

A-3.2: Communication via Modem

Use modems (dedicated or dial-up) when the instruments are located at great distances. However, set the modem to auto answer at the recommended value of 1200 baud rate. Also, flow control must be disabled.

I. MODEM CONNECTED TO COMPUTER (ORIGINATE MODEM)

Programming the Modem

Comply with the modem's instruction manual and follow these instructions:
Restore Modem to Factory Settings:

- Erases all previously programmed settings.

Set Modem to Display Result Codes:

- The device uses the result codes.

Set Modem to Verbal Result Code:

- The device uses the verbal codes

Set Modem to Ignore DTR Signal:

- Necessary for the device to ensure connection with originate modem.

Set Modem to Disable Flow Control:

- Necessary to communicate with remote modem connected to device.

Tell Modem to Write the New Settings to Activate Profile:

- Places these settings into nonvolatile memory; the settings take effect after the modem powers up.

II. MODEM CONNECTED TO THE DEVICE (REMOTE MODEM)

Programming the Modem

Comply with the modem's instruction manual and follow these instructions:
Restore Modem to Factory Settings:

- Erases all previously programmed settings.

Set Modem to Auto Answer on N Rings:

- Sets the remote modem to answer the call after \mathbf{N} rings.

Set the Modem to Auto Negotiate Mode:

- Sets the remote to auto-negotiate to communicate successfully with the Futura+ Series and other devices in the modem.

Set Modem to Return Numeric Result Codes:

- Increases speed connection with the Futura+ Series.

Set Modem to Ignore DTR Signal:

- Necessary for device to ensure connection with originate modem.

Set Modem to Disable Flow Control:

- Necessary to communicate with remote modem connected to the Futura+ Series

Tell the Modem to Write the New Settings to Activate Profile:
Places new settings into nonvolatile memory; settings take effect after the modem powers up.

[^0]: \Rightarrow Function 00. appears in upper display. The second 0 indicates Function 0
 \Rightarrow Lower display indicates current Interval setting.

[^1]: \Rightarrow Repeat procedure until new Switch Setting is entered.
 \Rightarrow The middle display blanks and new Switch Settings are indicated on lower display.

